中文版 | English
题名

Lab2Pix: Label-Adaptive Generative Adversarial Network for Unsupervised Image Synthesis

作者
DOI
发表日期
2020-10
会议名称
ACM MM
会议录名称
页码
3734–3742
会议日期
2020
会议地点
Virtual-only Conference
出版者
摘要

Lab2Pix refers to the task of generating photo-realistic images from labels, e.g., semantic labels or sketch labels. Despite inheriting from image-to-image translation, Lab2Pix develops its own characteristics due to the differences between labels and general images. This prevents Lab2Pix task from simply applying general image-to-image translation models. Therefore, we propose an unsupervised framework named Lab2Pix to adaptively synthesize images from labels by elegantly considering the particular properties of label to image synthesis task. Specifically, since the labels contain much less information than the images, we design our generator in a cumulative style which gradually renders synthesized images by fusing features in different levels. Accordingly, the verification process feeds the generated images to a segmentation component and compares the results to the original input label. Furthermore, we propose a sharp enhancement loss, an image consistency loss and a foreground enhancement mask to encourage the network to synthesize photo-realistic images. Experiments conducted on Cityscapes, Facades, Edge2shoes and Edge2handbags datasets demonstrate that our Lab2Pix significantly outperforms existing state-of-the-art unsupervised methods and is even comparable to supervised methods. The source code is available at https://github.com/RoseRollZhu/Lab2Pix.

收录类别
EI入藏号
20212210440616
EI主题词
Image segmentation ; Semantics
来源库
人工提交
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/226056
专题工学院_计算机科学与工程系
作者单位
1.University of Electronic Science and Technology of China
2.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Lianli Gao,Junchen Zhu,Jingkuan Song,et al. Lab2Pix: Label-Adaptive Generative Adversarial Network for Unsupervised Image Synthesis[C]:Association for Computing MachineryNew YorkNYUnited States,2020:3734–3742.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lianli Gao]的文章
[Junchen Zhu]的文章
[Jingkuan Song]的文章
百度学术
百度学术中相似的文章
[Lianli Gao]的文章
[Junchen Zhu]的文章
[Jingkuan Song]的文章
必应学术
必应学术中相似的文章
[Lianli Gao]的文章
[Junchen Zhu]的文章
[Jingkuan Song]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。