中文版 | English
题名

Computational Study on Effectiveness of Knowledge Transfer in Dynamic Multi-objective Optimization

作者
DOI
发表日期
2020
会议名称
2020 IEEE Congress on Evolutionary Computation (CEC)
会议录名称
会议日期
2020-07-19
会议地点
Glasgow, United Kingdom
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Transfer learning has been used for solving multiple optimization and dynamic multi-objective optimization problems, since transfer learning is believed to be able to transfer useful information from one problem instance to help solving another related problem instance. This paper aims to study how effective transfer learning is in dynamic multi-objective optimization (DMO). Through computation time analysis of transfer learning, we show that the `inner' optimization problem introduced by transfer learning is very time-consuming. In order to enhance the efficiency, two alternatives are computationally investigated on a number of dynamic bi- and tri-objective test problems. Experimental results have shown that the greatly enhanced efficiency does not result in much degeneration on the performance of transfer learning. Considering the high computational cost of transfer learning, it is likely that the original purpose of using transfer learning in DMO might be negated. In other words, the computation time saved in optimization is eaten up by computationally expensive transfer learning. As a result, there is less gain than expected in the overall computational efficiency. To verify this, experiments have been conducted, regarding using computational cost of transfer learning to optimize randomly generated solutions. The results have demonstrated that the convergence and diversity of final solutions generated from the random solutions are significantly better than those generated from transferred solutions under the same total computational budget.

关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
European Union[766186]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology ; Operations Research & Management Science
WOS记录号
WOS:000703998203036
来源库
人工提交
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/226065
专题工学院_计算机科学与工程系
作者单位
1.CERCIA, School of Computer Science, University of Birmingham, UK
2.Honda Research Institute Europe GmbH, Carl-Legien-Str. 30, Offenbach, Germany
3.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Ruan, Gan,Minku, Leandro L.,Menzel, Stefan,et al. Computational Study on Effectiveness of Knowledge Transfer in Dynamic Multi-objective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Computational Study (161KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ruan, Gan]的文章
[Minku, Leandro L.]的文章
[Menzel, Stefan]的文章
百度学术
百度学术中相似的文章
[Ruan, Gan]的文章
[Minku, Leandro L.]的文章
[Menzel, Stefan]的文章
必应学术
必应学术中相似的文章
[Ruan, Gan]的文章
[Minku, Leandro L.]的文章
[Menzel, Stefan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。