中文版 | English
题名

Quantifying The Generative Capabilities Of Variational Autoencoders For 3D Car Point Clouds

作者
DOI
发表日期
2020
会议名称
2020 IEEE Symposium Series on Computational Intelligence (SSCI)
ISBN
978-1-7281-2548-0
会议录名称
页码
1469-1477
会议日期
2020-12-01
会议地点
Canberra, ACT, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
During each cycle of automotive development, large amounts of geometric data are generated as results of design studies and simulation tasks. Discovering hidden knowledge from this data and making it available to the development team strengthens the design process by utilizing historic information when creating novel products. To this end, we propose to use powerful geometric deep learning models that learn low-dimensional representation of the design data in an unsupervised fashion. Trained models allow to efficiently explore the design space, as well as to generate novel designs. One popular class of generative models are variational autoencoders, which have however been rarely applied to geometric data. Hence, we use a variational autoencoder for 3D point clouds (PC-VAE) and explore the model's generative capabilities with a focus on the generation of realistic yet novel 3D shapes. We apply the PC-VAE to point clouds sampled from car shapes from a benchmark data set and employ quantitative measures to show that our PC-VAE generates realistic car shapes, wile returning a richer variety of unseen shapes compared to a baseline autoencoder. Finally, we demonstrate how the PC-VAE can be guided towards generating shapes with desired target properties by optimizing the parameters that maximize the output of a trained classifier for said target properties. We conclude that generative models are a powerful tool that may aid designers in automotive product development.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
European Union's Horizon 2020 research and innovation programme[766186]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号
WOS:000682772901067
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308513
引用统计
被引频次[WOS]:12
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/226066
专题工学院_计算机科学与工程系
作者单位
1.Honda Research Institute Europe GmbH, Carl-Legien-Str. 30, Offenbach, Germany
2.CERCIA, School of Computer Science, University of Birmingham, Birmingham, UK
3.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Sneha Saha,Stefan Menzel,Leandro L. Minku,et al. Quantifying The Generative Capabilities Of Variational Autoencoders For 3D Car Point Clouds[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1469-1477.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Quantifying The Gene(477KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sneha Saha]的文章
[Stefan Menzel]的文章
[Leandro L. Minku]的文章
百度学术
百度学术中相似的文章
[Sneha Saha]的文章
[Stefan Menzel]的文章
[Leandro L. Minku]的文章
必应学术
必应学术中相似的文章
[Sneha Saha]的文章
[Stefan Menzel]的文章
[Leandro L. Minku]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。