中文版 | English
题名

Multi-task Additive Models for Robust Estimation and Automatic Structure Discovery

作者
通讯作者Hong Chen
发表日期
2020
会议名称
34th Conference on Neural Information Processing Systems (NeurIPS 2020)At: Vancouver, Canada.
卷号
2020-December
会议日期
November 2020
会议地点
Virtual-only Conference
摘要

Additive models have attracted much attention for high-dimensional regressionestimation and variable selection. However, the existing models are usually lim-ited to the single-task learning framework under the mean squared error (MSE)criterion, where the utilization of variable structure depends heavily on a prioriknowledge among variables. For high-dimensional observations in real environ-ment,e.g., Coronal Mass Ejections (CMEs) data, the learning performance ofprevious methods may be degraded seriously due to the complex non-Gaussiannoise and the insufficiency of a prior knowledge on variable structure. To tacklethis problem, we propose a new class of additive models, called Multi-task Addi-tive Models (MAM), by integrating the mode-induced metric, the structure-basedregularizer, and additive hypothesis spaces into a bilevel optimization framework.Our approach does not require any priori knowledge of variable structure and suitsfor high-dimensional data with complex noise,e.g., skewed noise, heavy-tailednoise, and outliers. A smooth iterative optimization algorithm with convergenceguarantees is provided to implement MAM efficiently. Experiments on simulationsand the CMEs analysis demonstrate the competitive performance of our approachfor robust estimation and automatic structure discovery.

相关链接[来源记录]
收录类别
EI入藏号
20212610554791
EI主题词
Additives ; Clustering algorithms ; Gaussian noise (electronic) ; Iterative methods ; Mean square error
EI分类号
Chemical Agents and Basic Industrial Chemicals:803 ; Information Sources and Analysis:903.1 ; Numerical Methods:921.6 ; Mathematical Statistics:922.2
来源库
人工提交
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/226077
专题工学院_计算机科学与工程系
作者单位
1.College of Informatics, Huazhong Agricultural University, China
2.College of Science, Huazhong Agricultural University, China
3.Department of Computer Science and Engineering,Southern University of Science and Technology, China
4.Department of Mathematics and Statistics, University of Ottawa, Canada
5.School of Computer Science and Technology, Xi’an Jiaotong University, China
6.National Space Science Center, Chinese Academy of Sciences, China
推荐引用方式
GB/T 7714
Yingjie Wang,Hong Chen,Feng Zheng,et al. Multi-task Additive Models for Robust Estimation and Automatic Structure Discovery[C],2020.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
NeurIPS-2020-multi-t(1266KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yingjie Wang]的文章
[Hong Chen]的文章
[Feng Zheng]的文章
百度学术
百度学术中相似的文章
[Yingjie Wang]的文章
[Hong Chen]的文章
[Feng Zheng]的文章
必应学术
必应学术中相似的文章
[Yingjie Wang]的文章
[Hong Chen]的文章
[Feng Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。