中文版 | English
题名

On the robustness of median sampling in noisy evolutionary optimization

作者
通讯作者Qian, Chao
发表日期
2021-05-01
DOI
发表期刊
ISSN
1674-733X
EISSN
1869-1919
卷号64期号:5
摘要
Evolutionary algorithms (EAs) are a sort of nature-inspired metaheuristics, which have wide applications in various practical optimization problems. In these problems, objective evaluations are usually inaccurate, because noise is almost inevitable in real world, and it is a crucial issue to weaken the negative effect caused by noise. Sampling is a popular strategy, which evaluates the objective a couple of times, and employs the mean of these evaluation results as an estimate of the objective value. In this work, we introduce a novel sampling method, median sampling, into EAs, and illustrate its properties and usefulness theoretically by solving OneMax, the problem of maximizing the number of 1s in a bit string. Instead of the mean, median sampling employs the median of the evaluation results as an estimate. Through rigorous theoretical analysis on OneMax under the commonly used onebit noise, we show that median sampling reduces the expected runtime exponentially. Next, through two special noise models, we show that when the 2-quantile of the noisy fitness increases with the true fitness, median sampling can be better than mean sampling; otherwise, it may fail and mean sampling can be better. The results may guide us to employ median sampling properly in practical applications.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2017YFB1003102] ; National Natural Science Foundation of China[62022039,61672478,61876077]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号
WOS:000639881800001
出版者
EI入藏号
20211610233397
EI主题词
Biomimetics ; Evolutionary algorithms
EI分类号
Biotechnology:461.8 ; Optimization Techniques:921.5
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/226921
专题工学院_计算机科学与工程系
作者单位
1.Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Bian, Chao,Qian, Chao,Yu, Yang,et al. On the robustness of median sampling in noisy evolutionary optimization[J]. Science China-Information Sciences,2021,64(5).
APA
Bian, Chao,Qian, Chao,Yu, Yang,&Tang, Ke.(2021).On the robustness of median sampling in noisy evolutionary optimization.Science China-Information Sciences,64(5).
MLA
Bian, Chao,et al."On the robustness of median sampling in noisy evolutionary optimization".Science China-Information Sciences 64.5(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bian, Chao]的文章
[Qian, Chao]的文章
[Yu, Yang]的文章
百度学术
百度学术中相似的文章
[Bian, Chao]的文章
[Qian, Chao]的文章
[Yu, Yang]的文章
必应学术
必应学术中相似的文章
[Bian, Chao]的文章
[Qian, Chao]的文章
[Yu, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。