中文版 | English
题名

An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery

作者
通讯作者Hou,Xuejiao
发表日期
2021-07-01
DOI
发表期刊
ISSN
0034-4257
卷号260
摘要
Submerged aquatic vegetation (SAV) is one of the main producers in inland lakes. Tracking the temporal and spatial changes in SAV is crucial for the identification of state changes in lacustrine ecosystems, such as changes in light, nutrients, and temperature. However, the available SAV classification algorithms based on remote sensing are highly dependent on field survey data and/or human interventions, prohibiting the extraction of large-scale and/or long-term patterns. Here, we developed an automatic SAV classification algorithm using Landsat imagery, where the thresholds of two key parameters (the floating algae index (FAI) and reflectance in the shortwave-infrared (SWIR) band) are automatically determined. The algorithm was applied to eight Landsat images of four Yangtze Plain lakes and obtained a mean producer accuracy of 82.9% when gauged against field-surveyed datasets. The algorithm was further employed to obtain long-term SAV areal data from Changdang Lake on the Yangtze Plain from 1984 to 2018, and the result was highly consistent with lake transparency data. Numerical simulations indicated that our developed algorithm is insensitive to the Chl-a concentration of the water column. Yet, it has a detection limit of ~0.35 m below the water surface, and such a limit changes with different fractions of vegetation coverage within a pixel. The automatic classification algorithm proposed in this study has the potential to obtain the temporal and spatial distribution patterns of SAV in other shallow lakes where SAV grows in lakes sharing similar hydrological characteristics as the lakes in the Yangtze Plain.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000663143600005
EI入藏号
20211710240894
EI主题词
Classification (of information) ; Ecosystems ; Image classification ; Infrared radiation ; Lakes ; Surveys ; Vegetation
EI分类号
Ecology and Ecosystems:454.3 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Light/Optics:741.1 ; Information Sources and Analysis:903.1
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85104490786
来源库
Scopus
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/227700
专题工学院_环境科学与工程学院
作者单位
1.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Physical Geography and Ecosystem Science,Lund University,Sweden
3.Terrestrial Ecology Section,Department of Biology,University of Copenhagen,Copenhagen,Denmark
4.Center for Permafrost (CENPERM),University of Copenhagen,Copenhagen,Denmark
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Dai,Yanhui,Feng,Lian,Hou,Xuejiao,et al. An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery[J]. REMOTE SENSING OF ENVIRONMENT,2021,260.
APA
Dai,Yanhui,Feng,Lian,Hou,Xuejiao,&Tang,Jing.(2021).An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery.REMOTE SENSING OF ENVIRONMENT,260.
MLA
Dai,Yanhui,et al."An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery".REMOTE SENSING OF ENVIRONMENT 260(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dai,Yanhui]的文章
[Feng,Lian]的文章
[Hou,Xuejiao]的文章
百度学术
百度学术中相似的文章
[Dai,Yanhui]的文章
[Feng,Lian]的文章
[Hou,Xuejiao]的文章
必应学术
必应学术中相似的文章
[Dai,Yanhui]的文章
[Feng,Lian]的文章
[Hou,Xuejiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。