中文版 | English
题名

Watershed-scale water environmental capacity estimation assisted by machine learning

作者
通讯作者Li,Rong; Liu,Chongxuan
发表日期
2021-06-01
DOI
发表期刊
ISSN
0022-1694
卷号597
摘要

Water environmental capacity (WEC), the maximum amount of contaminants that a water body system can take without unacceptable impact to water quality in the system, is an important index for the managements of water resources and environmental quality. Here we proposed a machine learning-assisted approach that can be used to estimate watershed-scale WEC. In the approach, a process-based model was used to simulate contaminant concentrations at monitoring or critical river locations in response to contaminant inputs in the watershed, while an artificial neural network (ANN) as a machine learning method was trained to link the contaminant inputs in the watershed with the contaminant concentrations at the critical locations. From the linkages, a watershed-scale WEC that meets water quality constraints was obtained using a global optimization method. The integration of ANN in the WEC estimation is computationally efficient that can avoid exhaustive search of WEC using the process-based model only, especially in a complex river network system. Maozhou River watershed located at Shenzhen City, Southeast China, was used as an example to illustrate the approach with ammonium as an example contaminant. The obtained optimal WEC value varied with different water quality constraints and input distributions. The approach can be used to estimate WEC in the watershed with and without pre-existence contaminant inputs by optimizing the design of new inputs and their distribution. The results had an important implication for future watershed-scale water environmental management.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS记录号
WOS:000652835600097
EI入藏号
20211710255143
EI主题词
Contamination ; Environmental Management ; Global Optimization ; Learning Algorithms ; Machine Learning ; Neural Networks ; River Pollution ; Rivers ; Water Quality
EI分类号
Surface Water:444.1 ; Water Analysis:445.2 ; Water Pollution:453 ; Environmental Engineering, General:454.1 ; Environmental Impact And Protection:454.2 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Optimization Techniques:921.5
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85104655608
来源库
Scopus
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/227709
专题工学院_环境科学与工程学院
作者单位
1.School of Environment,Harbin Institute of Technology,Harbin,150090,China
2.State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Wang,Xin,Li,Rong,Tian,Yong,et al. Watershed-scale water environmental capacity estimation assisted by machine learning[J]. JOURNAL OF HYDROLOGY,2021,597.
APA
Wang,Xin,Li,Rong,Tian,Yong,&Liu,Chongxuan.(2021).Watershed-scale water environmental capacity estimation assisted by machine learning.JOURNAL OF HYDROLOGY,597.
MLA
Wang,Xin,et al."Watershed-scale water environmental capacity estimation assisted by machine learning".JOURNAL OF HYDROLOGY 597(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Xin]的文章
[Li,Rong]的文章
[Tian,Yong]的文章
百度学术
百度学术中相似的文章
[Wang,Xin]的文章
[Li,Rong]的文章
[Tian,Yong]的文章
必应学术
必应学术中相似的文章
[Wang,Xin]的文章
[Li,Rong]的文章
[Tian,Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。