题名 | Low-cost surrogate modeling of antennas using two-level Gaussian process regression method |
作者 | |
通讯作者 | Cheng,Qingsha S. |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 0894-3370
|
EISSN | 1099-1204
|
卷号 | 34 |
摘要 | In order to improve the accuracy of the surrogate model for antennas, a novel two-level Gaussian process regression (GPR) modeling method is proposed in this paper. A heuristic hypercube sampling method is proposed using the K-means clustering method to generate the training dataset with high uniformity. Based on the training dataset, the first-level GPR model is established between the design parameters and the full-wave electromagnetic (EM) simulation responses. The second-level GPR model is established using the design parameters and the residuals between the first-level GPR model and the EM simulation model. The sum of the two surrogate models is the two-level GPR model. The performance of the proposed modeling method is verified by two antenna examples including an ultra-wideband antenna and a circularly polarized dielectric antenna. Numerical results show that the proposed two-level GPR method achieves higher accuracy of antenna models than the conventional methods (GPR method and neural networks) with no additional cost. The overall time saving of the proposed method compared to the conventional methods is more than 50% for the majority of our tests. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | University Key Research Project of Guangdong Province[2018KZDXM063]
; National Natural Science Foundation of China[62071211]
|
WOS研究方向 | Engineering
; Mathematics
|
WOS类目 | Engineering, Electrical & Electronic
; Mathematics, Interdisciplinary Applications
|
WOS记录号 | WOS:000644342300001
|
出版者 | |
EI入藏号 | 20211810274835
|
EI主题词 | Costs
; Gaussian distribution
; Gaussian noise (electronic)
; K-means clustering
; Microwave antennas
; Numerical methods
; Regression analysis
; Ultra-wideband (UWB)
|
EI分类号 | Radio Systems and Equipment:716.3
; Cost and Value Engineering; Industrial Economics:911
; Numerical Methods:921.6
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85104866760
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/227817 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China 2.School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin,China 3.Department of Electronic and Computer Engineering,Hong Kong University of Science and Technology,Hong Kong |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Zhen,Jiang,Fan,Jiao,Yaxi,et al. Low-cost surrogate modeling of antennas using two-level Gaussian process regression method[J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS,2021,34.
|
APA |
Zhang,Zhen,Jiang,Fan,Jiao,Yaxi,&Cheng,Qingsha S..(2021).Low-cost surrogate modeling of antennas using two-level Gaussian process regression method.INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS,34.
|
MLA |
Zhang,Zhen,et al."Low-cost surrogate modeling of antennas using two-level Gaussian process regression method".INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS 34(2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10- Low‐cost surroga(3269KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论