中文版 | English
题名

A Novel Multi-feature Skeleton Representation for 3D Action Recognition

作者
通讯作者Xue,Jian
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12665 LNCS
页码
365-379
摘要
Deep-learning-based methods have been used for 3D action recognition in recent years. Methods based on recurrent neural networks (RNNs) have the advantage of modeling long-term context, but they focus mainly on temporal information and ignore the spatial relationships in each skeleton frame. In addition, it is difficult to handle a very long skeleton sequence using an RNN. Compared with an RNN, a convolutional neural network (CNN) is better able to extract spatial information. To model the temporal information of skeleton sequences and incorporate the spatial relationship in each frame efficiently using a CNN, this paper proposes a multi-feature skeleton representation for encoding features from original skeleton sequences. The relative distances between joints in each skeleton frame are computed from the original skeleton sequence, and several relative angles between the skeleton structures are computed. This useful information from the original skeleton sequence is encoded as pixels in grayscale images. To preserve more spatial relationships between input skeleton joints in these images, the skeleton joints are divided into five groups: one for the trunk and one for each arm and each leg. Relationships between joints in the same group are more relevant than those between joints in different groups. By rearranging pixels in encoded images, the joints that are mutually related in the spatial structure are adjacent in the images. The skeleton representations, composed of several grayscale images, are input to CNNs for action recognition. Experimental results demonstrate the effectiveness of the proposed method on three public 3D skeleton-based action datasets.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20211610234861
EI主题词
Convolutional neural networks ; Pattern recognition ; Pixels ; Recurrent neural networks
EI分类号
Biomechanics, Bionics and Biomimetics:461.3
Scopus记录号
2-s2.0-85104313554
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/227840
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.University of Chinese Academy of Sciences,Beijing,China
2.Peng Cheng Laboratory,Shenzhen,Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District,China
3.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Chen,Lian,Lu,Ke,Gao,Pengcheng,et al. A Novel Multi-feature Skeleton Representation for 3D Action Recognition[C],2021:365-379.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Lian]的文章
[Lu,Ke]的文章
[Gao,Pengcheng]的文章
百度学术
百度学术中相似的文章
[Chen,Lian]的文章
[Lu,Ke]的文章
[Gao,Pengcheng]的文章
必应学术
必应学术中相似的文章
[Chen,Lian]的文章
[Lu,Ke]的文章
[Gao,Pengcheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。