中文版 | English
题名

A Video-based Fall Detection Network by Spatio-temporal Joint-point Model on Edge Devices

作者
DOI
发表日期
2021
会议名称
ACM/IEEE Design Automation and Test in Europe Conference (DATE), 2021
ISSN
1530-1591
ISBN
978-1-7281-6336-9
会议录名称
卷号
2021-February
页码
422-427
会议日期
2021-02-03
会议地点
online
摘要

Tripping or falling is among the top threats inelderly healthcare, and the development of automatic fall detectionsystems are of considerable importance. With the fast developmentof the Internet of Things (IOT), camera vision-based solutions havedrawn much attention in recent years. The traditional fall videoanalysis on the cloud has significant communication overhead.This work introduces a fast and lightweight video fall detectionnetwork based on a spatio-temporal joint-point model to overcomethese hurdles. Instead of detecting falling motion by the traditionalConvolutional Neural Networks (CNNs), we propose a LongShort-Term Memory (LSTM) model based ontime-series joint-point features, extracted from apose extractorand then filteredfrom ageometric joint-point filter. Experiments are conducted toverify the proposed framework, which shows a high sensitivityof98.46%on Multiple Cameras Fall Dataset and100%on URFall Dataset. Furthermore, our model can achieve pose estimationtasks simultaneously, attaining73.3mAP in the COCO keypointchallenge dataset, which outperforms the OpenPose work by8%.

关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20213010680562
EI主题词
Cameras ; Convolutional neural networks ; Internet of things
EI分类号
Computer Software, Data Handling and Applications:723 ; Photographic Equipment:742.2
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9474206
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/228082
专题工学院_深港微电子学院
工学院_电子与电气工程系
作者单位
1.School of Microelectronics Southern University of Science and Technology Shenzhen, China
2.Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, China
3.Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
第一作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Ziyi Guan,Shuwei Li,Yuan Cheng,et al. A Video-based Fall Detection Network by Spatio-temporal Joint-point Model on Edge Devices[C],2021:422-427.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
C129.A Video-based F(887KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ziyi Guan]的文章
[Shuwei Li]的文章
[Yuan Cheng]的文章
百度学术
百度学术中相似的文章
[Ziyi Guan]的文章
[Shuwei Li]的文章
[Yuan Cheng]的文章
必应学术
必应学术中相似的文章
[Ziyi Guan]的文章
[Shuwei Li]的文章
[Yuan Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。