题名 | A Video-based Fall Detection Network by Spatio-temporal Joint-point Model on Edge Devices |
作者 | |
DOI | |
发表日期 | 2021
|
会议名称 | ACM/IEEE Design Automation and Test in Europe Conference (DATE), 2021
|
ISSN | 1530-1591
|
ISBN | 978-1-7281-6336-9
|
会议录名称 | |
卷号 | 2021-February
|
页码 | 422-427
|
会议日期 | 2021-02-03
|
会议地点 | online
|
摘要 | Tripping or falling is among the top threats inelderly healthcare, and the development of automatic fall detectionsystems are of considerable importance. With the fast developmentof the Internet of Things (IOT), camera vision-based solutions havedrawn much attention in recent years. The traditional fall videoanalysis on the cloud has significant communication overhead.This work introduces a fast and lightweight video fall detectionnetwork based on a spatio-temporal joint-point model to overcomethese hurdles. Instead of detecting falling motion by the traditionalConvolutional Neural Networks (CNNs), we propose a LongShort-Term Memory (LSTM) model based ontime-series joint-point features, extracted from apose extractorand then filteredfrom ageometric joint-point filter. Experiments are conducted toverify the proposed framework, which shows a high sensitivityof98.46%on Multiple Cameras Fall Dataset and100%on URFall Dataset. Furthermore, our model can achieve pose estimationtasks simultaneously, attaining73.3mAP in the COCO keypointchallenge dataset, which outperforms the OpenPose work by8%. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20213010680562
|
EI主题词 | Cameras
; Convolutional neural networks
; Internet of things
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Photographic Equipment:742.2
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9474206 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/228082 |
专题 | 工学院_深港微电子学院 工学院_电子与电气工程系 |
作者单位 | 1.School of Microelectronics Southern University of Science and Technology Shenzhen, China 2.Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, China 3.Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China |
第一作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Ziyi Guan,Shuwei Li,Yuan Cheng,et al. A Video-based Fall Detection Network by Spatio-temporal Joint-point Model on Edge Devices[C],2021:422-427.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
C129.A Video-based F(887KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论