题名 | S3-Net: A Fast and Lightweight Video Scene Understanding Network by Single-shot Segmentation |
作者 | |
通讯作者 | Hao Yu |
DOI | |
发表日期 | 2021
|
会议名称 | Winter Conference on Applications of Computer Vision,2021
|
ISSN | 2472-6737
|
ISBN | 978-1-6654-4640-2
|
会议录名称 | |
页码 | 3328-3336
|
会议日期 | 2021-01-05
|
会议地点 | online
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Real-time understanding in video is crucial in variousAI applications such as autonomous driving. This workpresents a fastsingle-shot segmentationstrategy for videoscene understanding. The proposed net, called S3-Net,quickly locates and segmentstarget sub-scenes, meanwhileextractsstructured time-series semantic featuresas inputsto an LSTM-based spatio-temporal model. Utilizing ten-sorization and quantization techniques, S3-Net is intendedto be lightweight for edge computing. Experiments usingCityScapes, UCF11, HMDB51 and MOMENTS datasetsdemonstrate that the proposed S3-Net achieves an accuracyimprovement of8.1%versus the 3D-CNN based approachon UCF11, a storage reduction of6.9×and an inferencespeed of22.8FPS on CityScapes with a GTX1080Ti GPU |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000693397600133
|
EI入藏号 | 20214010977221
|
EI主题词 | Computer vision
; Long short-term memory
|
EI分类号 | Computer Applications:723.5
; Vision:741.2
|
Scopus记录号 | 2-s2.0-85116157701
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9423231 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/228083 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | 1.Shanghai Jiao Tong University, China 2.Southern University of Science and Technology 3.The University of Hong Kong, Hong Kong |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yuan Cheng,Yuchao Yang,Hai-Bao Chen,et al. S3-Net: A Fast and Lightweight Video Scene Understanding Network by Single-shot Segmentation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:3328-3336.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
C128.Cheng_S3-Net_A_(4607KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论