中文版 | English
题名

Long non-coding RNA pairs to assist in diagnosing sepsis

作者
通讯作者Cheng, Lixin
发表日期
2021-04-16
DOI
发表期刊
ISSN
1471-2164
卷号22期号:1
摘要
Background Sepsis is the major cause of death in Intensive Care Unit (ICU) globally. Molecular detection enables rapid diagnosis that allows early intervention to minimize the death rate. Recent studies showed that long non-coding RNAs (lncRNAs) regulate proinflammatory genes and are related to the dysfunction of organs in sepsis. Identifying lncRNA signature with absolute abundance is challenging because of the technical variation and the systematic experimental bias. Results Cohorts (n = 768) containing whole blood lncRNA profiling of sepsis patients in the Gene Expression Omnibus (GEO) database were included. We proposed a novel diagnostic strategy that made use of the relative expressions of lncRNA pairs, which are reversed between sepsis patients and normal controls (eg. lncRNA(i) > lncRNA(j) in sepsis patients and lncRNA(i) < lncRNA(j) in normal controls), to identify 14 lncRNA pairs as a sepsis diagnostic signature. The signature was then applied to independent cohorts (n = 644) to evaluate its predictive performance across different ages and normalization methods. Comparing to common machine learning models and existing signatures, SepSigLnc consistently attains better performance on the validation cohorts from the same age group (AUC = 0.990 & 0.995 in two cohorts) and across different groups (AUC = 0.878 on average), as well as cohorts processed by an alternative normalization method (AUC = 0.953 on average). Functional analysis demonstrates that the lncRNA pairs in SepsigLnc are functionally similar and tend to implicate in the same biological processes including cell fate commitment and cellular response to steroid hormone stimulus. Conclusion Our study identified 14 lncRNA pairs as signature that can facilitate the diagnosis of septic patients at an intervenable point when clinical manifestations are not dramatic. Also, the computational procedure can be generalized to a standard procedure for discovering diagnostic molecule signatures.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Basic and Applied Basic Research Foundation[2019A1515110097]
WOS研究方向
Biotechnology & Applied Microbiology ; Genetics & Heredity
WOS类目
Biotechnology & Applied Microbiology ; Genetics & Heredity
WOS记录号
WOS:000641446800001
出版者
ESI学科分类
MOLECULAR BIOLOGY & GENETICS
来源库
Web of Science
引用统计
被引频次[WOS]:25
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/228164
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen Peoples Hosp,Clin Med Coll 2, Shenzhen 518020, Peoples R China
2.Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
第一作者单位南方科技大学第一附属医院
通讯作者单位南方科技大学第一附属医院
第一作者的第一单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Zheng, Xubin,Leung, Kwong-Sak,Wong, Man-Hon,et al. Long non-coding RNA pairs to assist in diagnosing sepsis[J]. BMC GENOMICS,2021,22(1).
APA
Zheng, Xubin,Leung, Kwong-Sak,Wong, Man-Hon,&Cheng, Lixin.(2021).Long non-coding RNA pairs to assist in diagnosing sepsis.BMC GENOMICS,22(1).
MLA
Zheng, Xubin,et al."Long non-coding RNA pairs to assist in diagnosing sepsis".BMC GENOMICS 22.1(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Xubin]的文章
[Leung, Kwong-Sak]的文章
[Wong, Man-Hon]的文章
百度学术
百度学术中相似的文章
[Zheng, Xubin]的文章
[Leung, Kwong-Sak]的文章
[Wong, Man-Hon]的文章
必应学术
必应学术中相似的文章
[Zheng, Xubin]的文章
[Leung, Kwong-Sak]的文章
[Wong, Man-Hon]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。