题名 | Occlusion-invariant face recognition using simultaneous segmentation |
作者 | |
通讯作者 | Zeng, Dan |
发表日期 | 2021-04-01
|
DOI | |
发表期刊 | |
ISSN | 2047-4938
|
EISSN | 2047-4946
|
卷号 | 10页码:679-691 |
摘要 | When using convolutional neural network (CNN) models to extract features of an occluded face, the occluded part will inevitably be embedded into the representation just as with other facial regions. Existing methods deal with occluded face recognition either by augmenting the training dataset with synthesized occluded faces or by segmenting occlusions first and subsequently recognize the face based on unoccluded facial regions. Instead, simultaneous occlusion segmentation and face recognition is developed to make the most of these correlated two tasks. This is inspired by the phenomenon that features corrupted by occlusion are traceable within a CNN trained to segment occluded parts in face images. Specifically, a simultaneous occlusion invariant deep network (SOIDN) is proposed that contains simultaneously operating face recognition and occlusion segmentation networks coupled with an occlusion mask adaptor module as their bridge to learn occlusion invariant features. The training of SOIDN is jointly supervised by classification and segmentation losses aiming to obtain (1) occlusion invariant features, (2) occlusion segmentation, and (3) an occlusion feature mask that weighs the reliability of features. Experiments on synthesized occluded dataset (e.g. LFW-occ) and real occluded face dataset (e.g. AR) demonstrate that SOIDN outperforms state of the art methods for face verification and identification. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000642249300001
|
出版者 | |
EI入藏号 | 20221411882257
|
EI主题词 | Convolutional neural networks
; Image segmentation
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/228401 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen, Peoples R China 2.Univ Twente, Enschede, Netherlands 3.20face BV, Overijssel, Netherlands |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zeng, Dan,Veldhuis, Raymond,Spreeuwers, Luuk,et al. Occlusion-invariant face recognition using simultaneous segmentation[J]. IET Biometrics,2021,10:679-691.
|
APA |
Zeng, Dan,Veldhuis, Raymond,Spreeuwers, Luuk,&Arendsen, Richard.(2021).Occlusion-invariant face recognition using simultaneous segmentation.IET Biometrics,10,679-691.
|
MLA |
Zeng, Dan,et al."Occlusion-invariant face recognition using simultaneous segmentation".IET Biometrics 10(2021):679-691.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2021BMT_OFR.pdf(1814KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论