中文版 | English
题名

Occlusion-invariant face recognition using simultaneous segmentation

作者
通讯作者Zeng, Dan
发表日期
2021-04-01
DOI
发表期刊
ISSN
2047-4938
EISSN
2047-4946
卷号10页码:679-691
摘要

When using convolutional neural network (CNN) models to extract features of an occluded face, the occluded part will inevitably be embedded into the representation just as with other facial regions. Existing methods deal with occluded face recognition either by augmenting the training dataset with synthesized occluded faces or by segmenting occlusions first and subsequently recognize the face based on unoccluded facial regions. Instead, simultaneous occlusion segmentation and face recognition is developed to make the most of these correlated two tasks. This is inspired by the phenomenon that features corrupted by occlusion are traceable within a CNN trained to segment occluded parts in face images. Specifically, a simultaneous occlusion invariant deep network (SOIDN) is proposed that contains simultaneously operating face recognition and occlusion segmentation networks coupled with an occlusion mask adaptor module as their bridge to learn occlusion invariant features. The training of SOIDN is jointly supervised by classification and segmentation losses aiming to obtain (1) occlusion invariant features, (2) occlusion segmentation, and (3) an occlusion feature mask that weighs the reliability of features. Experiments on synthesized occluded dataset (e.g. LFW-occ) and real occluded face dataset (e.g. AR) demonstrate that SOIDN outperforms state of the art methods for face verification and identification.

相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000642249300001
出版者
EI入藏号
20221411882257
EI主题词
Convolutional neural networks ; Image segmentation
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/228401
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Shenzhen, Peoples R China
2.Univ Twente, Enschede, Netherlands
3.20face BV, Overijssel, Netherlands
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zeng, Dan,Veldhuis, Raymond,Spreeuwers, Luuk,et al. Occlusion-invariant face recognition using simultaneous segmentation[J]. IET Biometrics,2021,10:679-691.
APA
Zeng, Dan,Veldhuis, Raymond,Spreeuwers, Luuk,&Arendsen, Richard.(2021).Occlusion-invariant face recognition using simultaneous segmentation.IET Biometrics,10,679-691.
MLA
Zeng, Dan,et al."Occlusion-invariant face recognition using simultaneous segmentation".IET Biometrics 10(2021):679-691.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2021BMT_OFR.pdf(1814KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng, Dan]的文章
[Veldhuis, Raymond]的文章
[Spreeuwers, Luuk]的文章
百度学术
百度学术中相似的文章
[Zeng, Dan]的文章
[Veldhuis, Raymond]的文章
[Spreeuwers, Luuk]的文章
必应学术
必应学术中相似的文章
[Zeng, Dan]的文章
[Veldhuis, Raymond]的文章
[Spreeuwers, Luuk]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。