题名 | Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence |
作者 | |
通讯作者 | Wang,Jianchun |
发表日期 | 2021-05-01
|
DOI | |
发表期刊 | |
EISSN | 2158-3226
|
卷号 | 11期号:5 |
摘要 | The subgrid-scale stress (SGS) of large-eddy simulation (LES) is modeled by artificial neural network-based spatial gradient models (ANN-SGMs). The velocity gradients at neighboring stencil locations are incorporated to improve the accuracy of the SGS stress. The consideration of the gradient terms in the stencil locations is in a semi-explicit form so that the deployed artificial neural network (ANN) can be considerably simplified. This leads to a much higher LES efficiency compared with previous "black-box"models while still retaining the level of accuracy in the a priori test. The correlation coefficients of the ANN-SGMs can be larger than 0.98 for the filter width in the inertial range. With the current formulation, the significances of the individual modeling terms are transparent, giving clear guidance to the potential condensation of the model, which further improves the LES efficiency. The computational cost of the current ANN-SGM method is found to be two orders lower than previous "black-box"models. In the a posteriori test, the ANN-SGM framework predicts more accurately the flow field compared with the traditional LES models. Both the flow statistics and the instantaneous field are accurately recovered. Finally, we show that the current model can be adapted to different filter widths with sufficient accuracy. These results demonstrate the advantage and great potential of the ANN-SGM framework as an attractive solution to the closure problem in large-eddy simulation of turbulence. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS记录号 | WOS:000675209300010
|
EI入藏号 | 20212010373991
|
EI主题词 | Computational efficiency
; Efficiency
; Large eddy simulation
; Turbulence
|
EI分类号 | Fluid Flow:631
; Production Engineering:913.1
; Mathematics:921
|
Scopus记录号 | 2-s2.0-85105852367
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:29
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/228445 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Turbulence Research and Applications,Center for Complex Flows and Soft Matter Research,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Guangdong-Hong Kong-Macao Jt. Lab. for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 力学与航空航天工程系; 南方科技大学 |
通讯作者单位 | 力学与航空航天工程系; 南方科技大学 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Wang,Yunpeng,Yuan,Zelong,Xie,Chenyue,et al. Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence[J]. AIP Advances,2021,11(5).
|
APA |
Wang,Yunpeng,Yuan,Zelong,Xie,Chenyue,&Wang,Jianchun.(2021).Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence.AIP Advances,11(5).
|
MLA |
Wang,Yunpeng,et al."Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence".AIP Advances 11.5(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论