中文版 | English
题名

Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence

作者
通讯作者Wang,Jianchun
发表日期
2021-05-01
DOI
发表期刊
EISSN
2158-3226
卷号11期号:5
摘要
The subgrid-scale stress (SGS) of large-eddy simulation (LES) is modeled by artificial neural network-based spatial gradient models (ANN-SGMs). The velocity gradients at neighboring stencil locations are incorporated to improve the accuracy of the SGS stress. The consideration of the gradient terms in the stencil locations is in a semi-explicit form so that the deployed artificial neural network (ANN) can be considerably simplified. This leads to a much higher LES efficiency compared with previous "black-box"models while still retaining the level of accuracy in the a priori test. The correlation coefficients of the ANN-SGMs can be larger than 0.98 for the filter width in the inertial range. With the current formulation, the significances of the individual modeling terms are transparent, giving clear guidance to the potential condensation of the model, which further improves the LES efficiency. The computational cost of the current ANN-SGM method is found to be two orders lower than previous "black-box"models. In the a posteriori test, the ANN-SGM framework predicts more accurately the flow field compared with the traditional LES models. Both the flow statistics and the instantaneous field are accurately recovered. Finally, we show that the current model can be adapted to different filter widths with sufficient accuracy. These results demonstrate the advantage and great potential of the ANN-SGM framework as an attractive solution to the closure problem in large-eddy simulation of turbulence.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000675209300010
EI入藏号
20212010373991
EI主题词
Computational efficiency ; Efficiency ; Large eddy simulation ; Turbulence
EI分类号
Fluid Flow:631 ; Production Engineering:913.1 ; Mathematics:921
Scopus记录号
2-s2.0-85105852367
来源库
Scopus
引用统计
被引频次[WOS]:29
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/228445
专题工学院_力学与航空航天工程系
作者单位
1.Guangdong Provincial Key Laboratory of Turbulence Research and Applications,Center for Complex Flows and Soft Matter Research,Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Guangdong-Hong Kong-Macao Jt. Lab. for Data-Driven Fluid Mechanics and Engineering Applications,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Wang,Yunpeng,Yuan,Zelong,Xie,Chenyue,et al. Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence[J]. AIP Advances,2021,11(5).
APA
Wang,Yunpeng,Yuan,Zelong,Xie,Chenyue,&Wang,Jianchun.(2021).Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence.AIP Advances,11(5).
MLA
Wang,Yunpeng,et al."Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence".AIP Advances 11.5(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Yunpeng]的文章
[Yuan,Zelong]的文章
[Xie,Chenyue]的文章
百度学术
百度学术中相似的文章
[Wang,Yunpeng]的文章
[Yuan,Zelong]的文章
[Xie,Chenyue]的文章
必应学术
必应学术中相似的文章
[Wang,Yunpeng]的文章
[Yuan,Zelong]的文章
[Xie,Chenyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。