中文版 | English
题名

Privacy-Preserving Cost-Sensitive Learning

作者
通讯作者Chang,Xiangyu
发表日期
2021-05-01
DOI
发表期刊
ISSN
2162-237X
EISSN
2162-2388
卷号32期号:5页码:2105-2116
摘要
Cost-sensitive learning methods guaranteeing privacy are becoming crucial nowadays in many applications where increasing use of sensitive personal information is observed. However, there has no optimal learning scheme developed in the literature to learn cost-sensitive classifiers under constraint of enforcing differential privacy. Our approach is to first develop a unified framework for existing cost-sensitive learning methods by incorporating the weight constant and weight functions into the classical regularized empirical risk minimization framework. Then, we propose two privacy-preserving algorithms with output perturbation and objective perturbation methods, respectively, to be integrated with the cost-sensitive learning framework. We showcase how this general framework can be used analytically by deriving the privacy-preserving cost-sensitive extensions of logistic regression and support vector machine. Experimental evidence on both synthetic and real data sets verifies that the proposed algorithms can reduce the misclassification cost effectively while satisfying the privacy requirement. A theoretical investigation is also conducted, revealing a very interesting analytic relation, i.e., that the choice of the weight constant and weight functions does not only influence the Fisher-consistent property (population minimizer of expected risk with a specific loss function leads to the Bayes optimal decision rule) but also interacts with privacy-preserving levels to affect the performance of classifiers significantly.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000647397200024
EI入藏号
20212010351719
EI主题词
Learning systems ; Logistic regression ; Perturbation techniques ; Support vector machines ; Support vector regression
EI分类号
Computer Software, Data Handling and Applications:723 ; Mathematics:921
Scopus记录号
2-s2.0-85105574608
来源库
Scopus
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/228452
专题商学院
商学院_信息系统与管理工程系
作者单位
1.Center of Intelligent Decision-Making and Machine Learning,School of Management,Xi'an Jiaotong University,Xi'an,710049,China
2.Department of Industrial and Systems Engineering,University of Washington,Seattle,98195,United States
3.College of Business,South University of Science and Technology,Shenzhen,518055,China
4.School of Management,Xi'an Jiaotong University,Xi'an,710049,China
推荐引用方式
GB/T 7714
Yang,Yi,Huang,Shuai,Huang,Wei,et al. Privacy-Preserving Cost-Sensitive Learning[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,32(5):2105-2116.
APA
Yang,Yi,Huang,Shuai,Huang,Wei,&Chang,Xiangyu.(2021).Privacy-Preserving Cost-Sensitive Learning.IEEE Transactions on Neural Networks and Learning Systems,32(5),2105-2116.
MLA
Yang,Yi,et al."Privacy-Preserving Cost-Sensitive Learning".IEEE Transactions on Neural Networks and Learning Systems 32.5(2021):2105-2116.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Yi]的文章
[Huang,Shuai]的文章
[Huang,Wei]的文章
百度学术
百度学术中相似的文章
[Yang,Yi]的文章
[Huang,Shuai]的文章
[Huang,Wei]的文章
必应学术
必应学术中相似的文章
[Yang,Yi]的文章
[Huang,Shuai]的文章
[Huang,Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。