中文版 | English
题名

DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction

作者
发表日期
2021
DOI
发表期刊
ISSN
1041-4347
EISSN
1558-2191
卷号PP期号:99页码:1-1
摘要
Predicting the density and flow of the crowd or traffic at a citywide level becomes possible by using the big data and cutting-edge AI technologies. It has been a very significant research topic with high social impact, which can be widely applied to emergency management, traffic regulation, and urban planning. In particular, by meshing a large urban area to a number of fine-grained mesh-grids, citywide crowd and traffic information in a continuous time period can be represented with 4D tensor (Timestep, Height, Width, Channel). Based on this idea, a series of methods have been proposed to address grid-based prediction for citywide crowd and traffic. In this study, we revisit the density and in-out flow prediction problem and publish a new aggregated human mobility dataset generated from a real-world smartphone application. Comparing with the existing ones, our dataset holds several advantages including large mesh-grid number, fine-grained mesh size, and high user sample. Towards this large-scale crowd dataset, we propose a novel deep learning model called DeepCrowd by designing pyramid architectures and high-dimensional attention mechanism based on Convolutional LSTM. Lastly, thorough and comprehensive performance evaluations are conducted to demonstrate the superiority of the proposed DeepCrowd comparing to multiple state-of-the-art methods.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
重要成果
ESI高被引
学校署名
其他
资助项目
Japan Society for the Promo-tion of Science (JSPS)[20K19859]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号
WOS:000895445500021
出版者
EI入藏号
20212010371220
EI主题词
Automobile radiators ; Continuous time systems ; Deep learning ; Forecasting ; Long short-term memory ; Mesh generation ; Risk management ; Traffic control ; Urban planning
EI分类号
Urban Planning and Development:403.1 ; Space Heating Equipment and Components:643.2 ; Computer Applications:723.5 ; Systems Science:961
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85105854733
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9422199
引用统计
被引频次[WOS]:37
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/228496
专题工学院_计算机科学与工程系
作者单位
1.Information Technology Center; Center for Spatial Information Science, The University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: jiangrh@csis.u-tokyo.ac.jp)
2.Center for Spatial Information Science, The University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: caizekun@csis.u-tokyo.ac.jp)
3.Center for Spatial Information Science, The University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: zn.wang@aist.go.jp)
4.Center for Spatial Information Science, The University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: chuang.yang@csis.u-tokyo.ac.jp)
5.Center for Spatial Information Science, The University of Tokyo, 13143 Bunkyo-ku, Chiba, Japan, 113-0033 (e-mail: fanzipei@iis.u-tokyo.ac.jp)
6.Center for Spatial Information Science, The University of Tokyo, 13143 Bunkyo-ku, Tokyo, Japan, (e-mail: chen1990@iis.u-tokyo.ac.jp)
7.Yahoo Japan Research, Yahoo Japan Corporation, 385145 Chiyoda-ku, Tokyo-to, Japan, (e-mail: ktsubouc@yahoo-corp.jp)
8.SUSTech-UTokyo Joint Research Center on Super Smart City, Department of Computer Science and Engineering, Southern University of Science and Technology, 255310 Shenzhen, Guangdong, China, (e-mail: songxuan@csis.u-tokyo.ac.jp)
9.Center for Spatial Information Science, University of Tokyo, Tokyo, Tokyo, Japan, (e-mail: shiba@csis.u-tokyo.ac.jp)
推荐引用方式
GB/T 7714
Jiang,Renhe,Cai,Zekun,Wang,Zhaonan,et al. DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2021,PP(99):1-1.
APA
Jiang,Renhe.,Cai,Zekun.,Wang,Zhaonan.,Yang,Chuang.,Fan,Zipei.,...&Shibasaki,Ryosuke.(2021).DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,PP(99),1-1.
MLA
Jiang,Renhe,et al."DeepCrowd: A Deep Model for Large-Scale Citywide Crowd Density and Flow Prediction".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING PP.99(2021):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Renhe]的文章
[Cai,Zekun]的文章
[Wang,Zhaonan]的文章
百度学术
百度学术中相似的文章
[Jiang,Renhe]的文章
[Cai,Zekun]的文章
[Wang,Zhaonan]的文章
必应学术
必应学术中相似的文章
[Jiang,Renhe]的文章
[Cai,Zekun]的文章
[Wang,Zhaonan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。