中文版 | English
题名

High-Dimensional Elliptical Sliced Inverse Regression in Non-Gaussian Distributions

作者
通讯作者Zhang,Jia
发表日期
2021
DOI
发表期刊
ISSN
0735-0015
EISSN
1537-2707
摘要
Sliced inverse regression (SIR) is the most widely used sufficient dimension reduction method due to its simplicity, generality and computational efficiency. However, when the distribution of covariates deviates from multivariate normal distribution, the estimation efficiency of SIR gets rather low, and the SIR estimator may be inconsistent and misleading, especially in the high-dimensional setting. In this article, we propose a robust alternative to SIR—called elliptical sliced inverse regression (ESIR), to analysis high-dimensional, elliptically distributed data. There are wide applications of elliptically distributed data, especially in finance and economics where the distribution of the data is often heavy-tailed. To tackle the heavy-tailed elliptically distributed covariates, we novelly use the multivariate Kendall’s tau matrix in a framework of generalized eigenvalue problem in sufficient dimension reduction. Methodologically, we present a practical algorithm for our method. Theoretically, we investigate the asymptotic behavior of the ESIR estimator under the high-dimensional setting. Extensive simulation results show ESIR significantly improves the estimation efficiency in heavy-tailed scenarios, compared with other robust SIR methods. Analysis of the Istanbul stock exchange dataset also demonstrates the effectiveness of our proposed method. Moreover, ESIR can be easily extended to other sufficient dimension reduction methods and applied to nonelliptical heavy-tailed distributions.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一
WOS记录号
WOS:000647124700001
ESI学科分类
ECONOMICS BUSINESS
Scopus记录号
2-s2.0-85105345146
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/228515
专题南方科技大学
理学院_统计与数据科学系
作者单位
1.Department of Statistics & Data Science,Southern University of Science and Technology,Shenzhen,China
2.School of Statistics,Southwestern University of Finance and Economics,Chengdu,China
3.Department of Statistics and Applied Probability,National University of Singapore,Singapore
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Chen,Xin,Zhang,Jia,Zhou,Wang. High-Dimensional Elliptical Sliced Inverse Regression in Non-Gaussian Distributions[J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS,2021.
APA
Chen,Xin,Zhang,Jia,&Zhou,Wang.(2021).High-Dimensional Elliptical Sliced Inverse Regression in Non-Gaussian Distributions.JOURNAL OF BUSINESS & ECONOMIC STATISTICS.
MLA
Chen,Xin,et al."High-Dimensional Elliptical Sliced Inverse Regression in Non-Gaussian Distributions".JOURNAL OF BUSINESS & ECONOMIC STATISTICS (2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen,Xin]的文章
[Zhang,Jia]的文章
[Zhou,Wang]的文章
百度学术
百度学术中相似的文章
[Chen,Xin]的文章
[Zhang,Jia]的文章
[Zhou,Wang]的文章
必应学术
必应学术中相似的文章
[Chen,Xin]的文章
[Zhang,Jia]的文章
[Zhou,Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。