中文版 | English
题名

Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation

作者
通讯作者Liu,Junguo
发表日期
2021-10-01
DOI
发表期刊
ISSN
1474-7065
卷号123
摘要

Accurate and efficient runoff simulations are crucial for water management in basins. Rainfall-runoff simulation approaches range between physical, conceptual, and data-driven models. With the recent development of machine-learning techniques, machine learning methods have been widely applied in the field of hydrology. Existing studies show that such methods can achieve comparable or even better performances than conventional hydrological models in runoff simulation. In particular, long short-term memory (LSTM) neural networks are able to overcome the shortcomings of traditional neural network methods in handling time series data. However, the impacts of the time memory on rainfall-runoff simulation are rarely studied. In this study, hysteresis effects in hydrology were investigated and the performances of machine learning methods and traditional hydrological models were assessed. The results show that the ANN model is more suitable for monthly scale simulation, while the LSTM model performs better at daily scale. Hydrological hysteresis is important for runoff simulations when using machine learning methods, especially at daily scale. By considering hysteresis in the simulation, the RMSE is significantly improved by 27% (21%) for LSTM (ANN). In addition, LSTM is more robust for time series handling, while the ANN is easier to be overfitted due to the limitation of neural network structure. This study provides new insights into the potential use of machine learning in hydrological simulations.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000685460800001
EI入藏号
20212110405374
EI主题词
Brain ; Data handling ; Hydrology ; Hysteresis ; Machine learning ; Rain ; Runoff ; Time series ; Water management
EI分类号
Flood Control:442.1 ; Precipitation:443.3 ; Biomedical Engineering:461.1 ; Data Processing and Image Processing:723.2 ; Mathematical Statistics:922.2 ; Systems Science:961
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85106295526
来源库
Scopus
引用统计
被引频次[WOS]:43
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/229476
专题工学院_环境科学与工程学院
作者单位
School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Mao,Ganquan,Wang,Meng,Liu,Junguo,et al. Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation[J]. PHYSICS AND CHEMISTRY OF THE EARTH,2021,123.
APA
Mao,Ganquan.,Wang,Meng.,Liu,Junguo.,Wang,Zifeng.,Wang,Kai.,...&Li,Yuxin.(2021).Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation.PHYSICS AND CHEMISTRY OF THE EARTH,123.
MLA
Mao,Ganquan,et al."Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation".PHYSICS AND CHEMISTRY OF THE EARTH 123(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mao,Ganquan]的文章
[Wang,Meng]的文章
[Liu,Junguo]的文章
百度学术
百度学术中相似的文章
[Mao,Ganquan]的文章
[Wang,Meng]的文章
[Liu,Junguo]的文章
必应学术
必应学术中相似的文章
[Mao,Ganquan]的文章
[Wang,Meng]的文章
[Liu,Junguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。