中文版 | English
题名

Maximum bound principle preserving integrating factor Runge–Kutta methods for semilinear parabolic equations

作者
通讯作者Qiao,Zhonghua
发表日期
2021-08-15
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号439
摘要
A large class of semilinear parabolic equations satisfy the maximum bound principle (MBP) in the sense that the time-dependent solution preserves for any time a uniform pointwise bound imposed by its initial and boundary conditions. The MBP plays a crucial role in understanding the physical meaning and the wellposedness of the mathematical model. Investigation on numerical algorithms with preservation of the MBP has attracted increasingly attentions in recent years, especially for the temporal discretizations, since the violation of MBP may lead to nonphysical solutions or even blow-ups of the algorithms. In this paper, we study high-order MBP-preserving time integration schemes by means of the integrating factor Runge–Kutta (IFRK) method. Beginning with the space-discrete system of semilinear parabolic equations, we present the IFRK method in general form and derive the sufficient conditions for the method to preserve the MBP. In particular, we show that the classic four-stage, fourth-order IFRK scheme is MBP preserving for some typical semilinear systems although not strong stability preserving, which can be instantly applied to the Allen–Cahn type of equations. To our best knowledge, this is the first time to present a fourth-order linear numerical method preserving the MBP. In addition, convergence of these numerical schemes is proved theoretically and verified numerically, as well as their efficiency by simulations of 2D and 3D long-time evolutional behaviors. Numerical experiments are also carried out for a model which is not a typical gradient flow as the Allen–Cahn type of equations.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000663421700002
EI入藏号
20212010363912
EI主题词
Numerical methods ; Partial differential equations
EI分类号
Calculus:921.2 ; Numerical Methods:921.6
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85105737941
来源库
Scopus
引用统计
被引频次[WOS]:54
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/229496
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Department of Mathematics,University of South Carolina,Columbia,29208,United States
2.Department of Applied Mathematics,The Hong Kong Polytechnic University,Kowloon,Hung Hom,Hong Kong
3.Department of Mathematics,SUSTech International Center for Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Ju,Lili,Li,Xiao,Qiao,Zhonghua,等. Maximum bound principle preserving integrating factor Runge–Kutta methods for semilinear parabolic equations[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2021,439.
APA
Ju,Lili,Li,Xiao,Qiao,Zhonghua,&Yang,Jiang.(2021).Maximum bound principle preserving integrating factor Runge–Kutta methods for semilinear parabolic equations.JOURNAL OF COMPUTATIONAL PHYSICS,439.
MLA
Ju,Lili,et al."Maximum bound principle preserving integrating factor Runge–Kutta methods for semilinear parabolic equations".JOURNAL OF COMPUTATIONAL PHYSICS 439(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ju,Lili]的文章
[Li,Xiao]的文章
[Qiao,Zhonghua]的文章
百度学术
百度学术中相似的文章
[Ju,Lili]的文章
[Li,Xiao]的文章
[Qiao,Zhonghua]的文章
必应学术
必应学术中相似的文章
[Ju,Lili]的文章
[Li,Xiao]的文章
[Qiao,Zhonghua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。