中文版 | English
题名

Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network

作者
通讯作者Zhang,Dongxiao
发表日期
2021-07-01
DOI
发表期刊
ISSN
0309-1708
EISSN
1872-9657
卷号153
摘要
Neural-network-based surrogate models are widely used to improve computational efficiency. Incorporating theoretical guidance into data-driven neural networks has improved their generalizability and accuracy. However, neural networks with strong form (partial differential equations) theoretical guidance have limited performance when strong discontinuity exists in the solution spaces, such as pressure discontinuity at sources/sinks in subsurface flow problems. In this study, we take advantage of weak form formulation and domain decomposition to deal with such difficulties. We propose two strategies based on our previously developed weak form Theory-guided Neural Network (TgNN-wf) to solve diffusivity equations with point sinks of either Dirichlet or Neumann type. Surrogate models are trained for well placement optimization and uncertainty analysis. Good agreement with numerical results is observed at lower computational costs, whereas strong form TgNN fails to provide satisfactory results, indicating the superiority of weak form formulation when solving discontinuous problems.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Water Resources
WOS类目
Water Resources
WOS记录号
WOS:000670306000003
出版者
EI入藏号
20212110402904
EI主题词
Computation theory ; Computational efficiency ; Domain decomposition methods ; Uncertainty analysis
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Numerical Methods:921.6 ; Probability Theory:922.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85106220310
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/229524
专题工学院_环境科学与工程学院
工学院
作者单位
1.Intelligent Energy Laboratory,Peng Cheng Laboratory,China
2.College of Engineering,Peking University,China
3.School of Environmental Science and Engineering,Southern University of Science and Technology,China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Xu,Rui,Wang,Nanzhe,Zhang,Dongxiao. Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network[J]. ADVANCES IN WATER RESOURCES,2021,153.
APA
Xu,Rui,Wang,Nanzhe,&Zhang,Dongxiao.(2021).Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network.ADVANCES IN WATER RESOURCES,153.
MLA
Xu,Rui,et al."Solution of diffusivity equations with local sources/sinks and surrogate modeling using weak form Theory-guided Neural Network".ADVANCES IN WATER RESOURCES 153(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Rui]的文章
[Wang,Nanzhe]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Xu,Rui]的文章
[Wang,Nanzhe]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Xu,Rui]的文章
[Wang,Nanzhe]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。