中文版 | English
题名

TEA-fed: Time-efficient asynchronous federated learning for edge computing

作者
DOI
发表日期
2021-05-11
会议录名称
页码
30-37
摘要
Federated learning (FL) has attracted more and more attention recently. The integration of FL and edge computing makes the edge system more efficient and intelligent. FL usually uses the server to actively select certain edge devices to participate in the global model training. However, the selected edge devices may be stragglers, or even crash during training. Meanwhile, the unselected idle edge devices cannot be fully utilized for training. Therefore, besides the widely studied communication efficiency and data heterogeneity issues in FL, we also take the above time efficiency into consideration, and propose a time-efficient asynchronous federated learning protocol, TEA-Fed, to solve these problems. With TEA-Fed, idle edge devices actively apply for training tasks and participate in model training asynchronously once assigned tasks. Considering that there may be a huge number of edge devices in edge computing, we introduce control parameters to limit the number of devices participating in training the identical model at the same time. Meanwhile, we also introduce caching mechanism and weighted averaging with respect to model staleness in the model aggregation step to reduce the adverse effects of model staleness and further improve the accuracy of the global model. Finally, the experimental results show that the protocol can accelerate the convergence of model training, improve the accuracy, and has robustness to heterogeneous data.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20212110391973
EI主题词
Efficiency ; Tea
EI分类号
Production Engineering:913.1
Scopus记录号
2-s2.0-85106046429
来源库
Scopus
引用统计
被引频次[WOS]:21
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/229571
专题工学院_计算机科学与工程系
作者单位
1.Soochow University,Suzhou, Jiangsu,China
2.Southern University of Science and Technology,Shenzhen, Guangdong,China
3.Muroran Institute of Technology,Muroran, Hokkaido,Japan
推荐引用方式
GB/T 7714
Zhou,Chendi,Tian,Hao,Zhang,Hong,et al. TEA-fed: Time-efficient asynchronous federated learning for edge computing[C],2021:30-37.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou,Chendi]的文章
[Tian,Hao]的文章
[Zhang,Hong]的文章
百度学术
百度学术中相似的文章
[Zhou,Chendi]的文章
[Tian,Hao]的文章
[Zhang,Hong]的文章
必应学术
必应学术中相似的文章
[Zhou,Chendi]的文章
[Tian,Hao]的文章
[Zhang,Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。