中文版 | English
题名

Atomic-Scale Observation of Structure Transition from Brownmillerite to Infinite Layer in SrFeO2.5Thin Films

作者
通讯作者Wang,Lifen
发表日期
2021
DOI
发表期刊
ISSN
0897-4756
EISSN
1520-5002
卷号33页码:3113-3120
摘要
Stoichiometry modulation in transition-metal perovskite oxides is a pivotal process that can give rise to unprecedented structures and new functionalities. Despite intensive study, the atomic mechanism of the structural transitions occurring in these versatile solid-state ceramics is far from well understood. Here, utilizing in situ electrical biasing (scanning) transmission electron microscopy, we show that the transformation from brownmillerite SrFeO2.5 to infinite-layer SrFeO2 can be directly visualized with atomic resolution. Our observations unveil that the transition process occurring in the cross section thinned film contains two steps. At the initial stage, the tilting of FeO6 octahedra and rotation of the FeO4 tetrahedra due to possible ferroelectricity result in conversion from the mixed structural domains (a|| and b||) to a homogeneous domain (a||) in SrFeO2.5; next, the electric reduced infinite-layer SrFeO2 gradually begins to nucleate at the film/substrate end showing a sharp interface and finally spreads across the entire film. The microscopic kinetics is dominated by the rearrangement of the Fe-O bonding geometry, which occurs through a two-step phase-transition mechanism involving oxygen polyhedral rearrangement, oxygen diffusion, and planar phase formation along the c-axis. This work clarifies the microscopic atomic processes of the oxygen polyhedral rearrangement, oxide ion migration, and the final phase transition from brownmillerite to infinite-layer structure, and offers a new pathway to obtain designed structural materials with specific functionality.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000651524100008
EI入藏号
20212210422649
EI主题词
Atoms ; High resolution transmission electron microscopy ; Iron metallography ; Perovskite ; Scanning electron microscopy ; Strontium compounds ; Transition metals
EI分类号
Minerals:482.2 ; Metallurgy and Metallography:531 ; Metallography:531.2 ; Optical Devices and Systems:741.3 ; Atomic and Molecular Physics:931.3
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85106534766
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/229624
专题理学院_物理系
作者单位
1.Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing,100190,China
2.School of Physical Sciences,University of Chinese Academy of Sciences,Beijing,100190,China
3.Department of Physics,Shenzhen Key Laboratory of for Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen, Guangdong,518055,China
4.Songshan Lake Materials Laboratory,Dongguan, Guangdong,523808,China
5.State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing,100084,China
6.State Key Laboratory of New Ceramics and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing,100084,China
7.Collaborative Innovation Center of Quantum Matter,Beijing,100084,China
第一作者单位物理系
推荐引用方式
GB/T 7714
Zhu,Liang,Gao,Lei,Wang,Lifen,et al. Atomic-Scale Observation of Structure Transition from Brownmillerite to Infinite Layer in SrFeO2.5Thin Films[J]. CHEMISTRY OF MATERIALS,2021,33:3113-3120.
APA
Zhu,Liang.,Gao,Lei.,Wang,Lifen.,Xu,Zhi.,Wang,Jianlin.,...&Bai,Xuedong.(2021).Atomic-Scale Observation of Structure Transition from Brownmillerite to Infinite Layer in SrFeO2.5Thin Films.CHEMISTRY OF MATERIALS,33,3113-3120.
MLA
Zhu,Liang,et al."Atomic-Scale Observation of Structure Transition from Brownmillerite to Infinite Layer in SrFeO2.5Thin Films".CHEMISTRY OF MATERIALS 33(2021):3113-3120.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Liang]的文章
[Gao,Lei]的文章
[Wang,Lifen]的文章
百度学术
百度学术中相似的文章
[Zhu,Liang]的文章
[Gao,Lei]的文章
[Wang,Lifen]的文章
必应学术
必应学术中相似的文章
[Zhu,Liang]的文章
[Gao,Lei]的文章
[Wang,Lifen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。