中文版 | English
题名

Siamese Region Proposal Networks and Attention Module for Real-time Visual Tracking

作者
DOI
发表日期
2020-12-25
会议录名称
卷号
PartF168342
页码
154-160
摘要
Recently, the region proposal networks have been combined with the Siamese networks for visualtracking and have achieved great attention due to their balanced accuracy and speed. However, it isstill challenging to track object with simultaneous requirements on robustness and discrimination power. A key to balance the online visual tracking accuracy and speed is to learn abundant features.In this paper, we propose an attention module based Siamese region proposal networks, named AM-Siam, for real-time visual tracking task. The basic idea is to refine neural features extracted from convolutional neural networks with channel attention module and spatial attention module, and providereliable visual attentional features for tracking. In addition, we design a multi- task loss function with balanced L1 loss to accelerate convergence speed of the proposed tracking network. The proposed AM-Siam is trained off-line in an end-to-end pattern and does not update the network parameters during tracking. Experiments on the Visual Object Tracking (VOT) show that AM-Siam achieves state-of-the-art results with tracking accuracy of 61% and tracking speed of 189 fps on the VOT. Moreover, experimental results demonstrate the effectiveness of our proposed AM-Siam tracker compared withstate-of-the-art trackers.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20211610228973
EI主题词
Convolutional neural networks ; Image processing ; Video signal processing
EI分类号
Television Systems and Equipment:716.4
Scopus记录号
2-s2.0-85104177137
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/229666
专题工学院_电子与电气工程系
作者单位
Department of Electronics and Electrical Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Dong,Hang,Zeng,Yuan,Gong,Yi. Siamese Region Proposal Networks and Attention Module for Real-time Visual Tracking[C],2020:154-160.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dong,Hang]的文章
[Zeng,Yuan]的文章
[Gong,Yi]的文章
百度学术
百度学术中相似的文章
[Dong,Hang]的文章
[Zeng,Yuan]的文章
[Gong,Yi]的文章
必应学术
必应学术中相似的文章
[Dong,Hang]的文章
[Zeng,Yuan]的文章
[Gong,Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。