中文版 | English
名称

Sharp bounds for genetic drift in estimation of distribution algorithms (Hot-off-the-press track at GECCO 2020)

作者
发布日期
2020-07-08
关键词
语种
英语
相关链接[Scopus记录]
摘要

Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a population. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that the random sampling in the model update can move the sampling frequencies to boundary values not justified by the fitness. This can result in a considerable performance loss. This work gives the first tight quantification of this effect for three EDAs and one ant colony optimizer, namely for the univariate marginal distribution algorithm, the compact genetic algorithm, population-based incremental learning, and the max-min ant system with iteration-best update. Our results allow to choose the parameters of these algorithms in such a way that within a desired runtime, no sampling frequency approaches the boundary values without a clear indication from the objective function. This paper for the Hot-off-the-Press track at GECCO 2020 summarizes the work "Sharp Bounds for Genetic Drift in Estimation of Distribution Algorithms" by B. Doerr and W. Zheng, which has been accepted for publication in the IEEE Transactions on Evolutionary Computation [5].

DOI
期刊来源
页码
15-16
收录类别
学校署名
通讯
Scopus记录号
2-s2.0-85089747252
来源库
Scopus
通讯作者Doerr,Benjamin; Zheng,Weijie
共同第一作者Doerr,Benjamin; Zheng,Weijie
EI入藏号
20203509095056
EI主题词
Computation theory ; Heuristic algorithms ; Presses (machine tools) ; Probability distributions ; Ant colony optimization ; Genetic algorithms
EI分类号
Machine Tools, General:603.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Programming:723.1 ; Optimization Techniques:921.5 ; Numerical Methods:921.6 ; Probability Theory:922.1
引用统计
被引频次[WOS]:0
成果类型其他
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/229692
专题工学院_计算机科学与工程系
作者单位
1.Laboratoire d'Informatique (LIX) École Polytechnique,CNRS Institut Polytechnique de Paris,Palaiseau,France
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Doerr,Benjamin,Zheng,Weijie. Sharp bounds for genetic drift in estimation of distribution algorithms (Hot-off-the-press track at GECCO 2020). 2020-07-08.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Doerr,Benjamin]的文章
[Zheng,Weijie]的文章
百度学术
百度学术中相似的文章
[Doerr,Benjamin]的文章
[Zheng,Weijie]的文章
必应学术
必应学术中相似的文章
[Doerr,Benjamin]的文章
[Zheng,Weijie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。