名称 | Sharp bounds for genetic drift in estimation of distribution algorithms (Hot-off-the-press track at GECCO 2020) |
作者 | |
发布日期 | 2020-07-08
|
关键词 | |
语种 | 英语
|
相关链接 | [Scopus记录] |
摘要 | Estimation of distribution algorithms (EDAs) are a successful branch of evolutionary algorithms (EAs) that evolve a probabilistic model instead of a population. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that the random sampling in the model update can move the sampling frequencies to boundary values not justified by the fitness. This can result in a considerable performance loss. This work gives the first tight quantification of this effect for three EDAs and one ant colony optimizer, namely for the univariate marginal distribution algorithm, the compact genetic algorithm, population-based incremental learning, and the max-min ant system with iteration-best update. Our results allow to choose the parameters of these algorithms in such a way that within a desired runtime, no sampling frequency approaches the boundary values without a clear indication from the objective function. This paper for the Hot-off-the-Press track at GECCO 2020 summarizes the work "Sharp Bounds for Genetic Drift in Estimation of Distribution Algorithms" by B. Doerr and W. Zheng, which has been accepted for publication in the IEEE Transactions on Evolutionary Computation [5]. |
DOI | |
期刊来源 | |
页码 | 15-16
|
收录类别 | |
学校署名 | 通讯
|
Scopus记录号 | 2-s2.0-85089747252
|
来源库 | Scopus
|
通讯作者 | Doerr,Benjamin; Zheng,Weijie |
共同第一作者 | Doerr,Benjamin; Zheng,Weijie |
EI入藏号 | 20203509095056
|
EI主题词 | Computation theory
; Heuristic algorithms
; Presses (machine tools)
; Probability distributions
; Ant colony optimization
; Genetic algorithms
|
EI分类号 | Machine Tools, General:603.1
; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Computer Programming:723.1
; Optimization Techniques:921.5
; Numerical Methods:921.6
; Probability Theory:922.1
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 其他 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/229692 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Laboratoire d'Informatique (LIX) École Polytechnique,CNRS Institut Polytechnique de Paris,Palaiseau,France 2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Doerr,Benjamin,Zheng,Weijie. Sharp bounds for genetic drift in estimation of distribution algorithms (Hot-off-the-press track at GECCO 2020). 2020-07-08.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论