中文版 | English
题名

OF-MSRN: Optical flow-auxiliary multi-task regression network for direct quantitative measurement, segmentation and motion estimation

作者
通讯作者Li,Dengwang
发表日期
2020
会议名称
34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
会议录名称
卷号
34
页码
1218-1225
会议日期
FEB 07-12, 2020
会议地点
null,New York,NY
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Comprehensively analyzing the carotid artery is critically significant to diagnosing and treating cardiovascular diseases. The object of this work is to simultaneously achieve direct quantitative measurement and automated segmentation of the lumen diameter and intima-media thickness as well as the motion estimation of the carotid wall. No work has simultaneously achieved the comprehensive analysis of carotid artery due to three intractable challenges: 1) Tiny intima-media is more challenging to measure and segment; 2) Artifact generated by radial motion restrict the accuracy of measurement and segmentation; 3) Occlusions on diseased carotid walls generate dynamic complexity and indeterminacy. In this paper, we propose a novel optical flow-auxiliary multi-task regression network named OF-MSRN to overcome these challenges. We concatenate multi-scale features to a regression network to simultaneously achieve measurement and segmentation, which makes full use of the potential correlation between the two tasks. More importantly, we creatively explore an optical flow auxiliary module to take advantage of the co-promotion of segmentation and motion estimation to overcome the restrictions of the radial motion. Besides, we evaluate consistency between forward and backward optical flow to improve the accuracy of motion estimation of the diseased carotid wall. Extensive experiments on US sequences of 101 patients demonstrate the superior performance of OF-MSRN on the comprehensive analysis of the carotid artery by utilizing the dual optimization of the optical flow auxiliary module.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Education & Educational Research
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Education, Scientific Disciplines
WOS记录号
WOS:000667722801036
EI入藏号
20212110389759
EI主题词
Artificial intelligence ; Diagnosis ; Optical flows
EI分类号
Medicine and Pharmacology:461.6 ; Artificial Intelligence:723.4 ; Light/Optics:741.1
Scopus记录号
2-s2.0-85103401865
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/229706
专题南方科技大学第二附属医院
作者单位
1.Shandong Key Laboratory of Medical Physics and Image Processing,Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine,School of Physics and Electronics,Shandong Normal University,Jinan, Shandong,250358,China
2.Department of Ultrasound,Second Affiliated Hospital,Southern University of Science and Technology,Shenzhen Third People’s Hospital,Shenzhen, Guangdong,China
3.Department of Medical Imaging,Western University,London,Canada
4.Digital Image Group,London,Canada
推荐引用方式
GB/T 7714
Zhao,Chengqian,Feng,Cheng,Li,Dengwang,et al. OF-MSRN: Optical flow-auxiliary multi-task regression network for direct quantitative measurement, segmentation and motion estimation[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2020:1218-1225.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao,Chengqian]的文章
[Feng,Cheng]的文章
[Li,Dengwang]的文章
百度学术
百度学术中相似的文章
[Zhao,Chengqian]的文章
[Feng,Cheng]的文章
[Li,Dengwang]的文章
必应学术
必应学术中相似的文章
[Zhao,Chengqian]的文章
[Feng,Cheng]的文章
[Li,Dengwang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。