题名 | Ecgadv: Generating adversarial electrocardiogram to misguide arrhythmia classification system |
作者 | |
发表日期 | 2020
|
会议名称 | 34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
会议录名称 | |
卷号 | 34
|
页码 | 3446-3453
|
会议日期 | FEB 07-12, 2020
|
会议地点 | null,New York,NY
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | Deep neural networks (DNNs)-powered Electrocardiogram (ECG) diagnosis systems recently achieve promising progress to take over tedious examinations by cardiologists. However, their vulnerability to adversarial attacks still lack comprehensive investigation. The existing attacks in image domain could not be directly applicable due to the distinct properties of ECGs in visualization and dynamic properties. Thus, this paper takes a step to thoroughly explore adversarial attacks on the DNN-powered ECG diagnosis system. We analyze the properties of ECGs to design effective attacks schemes under two attacks models respectively. Our results demonstrate the blind spots of DNN-powered diagnosis systems under adversarial attacks, which calls attention to adequate countermeasures. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | RGC["CERG 16203719",16204418]
; Guangdong Natural Science Foundation[2017A030312008]
|
WOS研究方向 | Computer Science
; Education & Educational Research
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Education, Scientific Disciplines
|
WOS记录号 | WOS:000667722803064
|
EI入藏号 | 20212210428389
|
EI主题词 | Deep neural networks
; Electrocardiography
|
EI分类号 | Medicine and Pharmacology:461.6
; Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85100347473
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:12
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/229713 |
专题 | 南方科技大学 |
作者单位 | 1.The Hong Kong University of Science and Technology, 2.Southern University of Science and Technology,Peng Cheng Laboratory, 3.Huazhong University of Science and Technology, |
推荐引用方式 GB/T 7714 |
Chen,Huangxun,Huang,Chenyu,Huang,Qianyi,et al. Ecgadv: Generating adversarial electrocardiogram to misguide arrhythmia classification system[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2020:3446-3453.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论