题名 | Efficient evolutionary neural architecture search by modular inheritable crossover |
作者 | |
通讯作者 | Cheng, Ran |
发表日期 | 2021-07-01
|
DOI | |
发表期刊 | |
ISSN | 2210-6502
|
EISSN | 2210-6510
|
卷号 | 64 |
摘要 | Deep neural networks are widely used in the domain of image classification, and a large number of excellent deep neural networks have been proposed in recent years. However, hand-crafted neural networks often require human experts for elaborate designs, which can be time-consuming and error-prone. Hence, neural architecture search (NAS) methods have been proposed to design model architecture automatically. The evolutionary NAS methods have achieved encouraging results due to the global search capability of evolutionary algorithms. Nevertheless, most existing evolutionary NAS methods use only the mutation operator to generate offspring architectures. Consequently, the generated architectures could be pretty different from their parent architectures, failing to inherit the modular information to accelerate the convergence rate. We propose an efficient evolutionary method using a tailored crossover operator to address this deficiency, which enables the offspring architectures to inherit from their parent architectures. Moreover, we combine it with mutation operators under the framework of the evolutionary algorithm. Experimental results on both the CIFAR-10 and CIFAR-100 tasks show that our proposed evolutionary NAS method has achieved state-of-the-art results. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[61903178,61906081,
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000661348100005
|
出版者 | |
EI入藏号 | 20212410508368
|
EI主题词 | Deep Neural Networks
; Genetic Algorithms
; Network Architecture
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:13
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/230096 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
He, Cheng,Tan, Hao,Huang, Shihua,et al. Efficient evolutionary neural architecture search by modular inheritable crossover[J]. Swarm and Evolutionary Computation,2021,64.
|
APA |
He, Cheng,Tan, Hao,Huang, Shihua,&Cheng, Ran.(2021).Efficient evolutionary neural architecture search by modular inheritable crossover.Swarm and Evolutionary Computation,64.
|
MLA |
He, Cheng,et al."Efficient evolutionary neural architecture search by modular inheritable crossover".Swarm and Evolutionary Computation 64(2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
19.Efficient evoluti(1535KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论