中文版 | English
题名

Efficient evolutionary neural architecture search by modular inheritable crossover

作者
通讯作者Cheng, Ran
发表日期
2021-07-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号64
摘要

Deep neural networks are widely used in the domain of image classification, and a large number of excellent deep neural networks have been proposed in recent years. However, hand-crafted neural networks often require human experts for elaborate designs, which can be time-consuming and error-prone. Hence, neural architecture search (NAS) methods have been proposed to design model architecture automatically. The evolutionary NAS methods have achieved encouraging results due to the global search capability of evolutionary algorithms. Nevertheless, most existing evolutionary NAS methods use only the mutation operator to generate offspring architectures. Consequently, the generated architectures could be pretty different from their parent architectures, failing to inherit the modular information to accelerate the convergence rate. We propose an efficient evolutionary method using a tailored crossover operator to address this deficiency, which enables the offspring architectures to inherit from their parent architectures. Moreover, we combine it with mutation operators under the framework of the evolutionary algorithm. Experimental results on both the CIFAR-10 and CIFAR-100 tasks show that our proposed evolutionary NAS method has achieved state-of-the-art results.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[61903178,61906081,
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000661348100005
出版者
EI入藏号
20212410508368
EI主题词
Deep Neural Networks ; Genetic Algorithms ; Network Architecture
来源库
Web of Science
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/230096
专题工学院_计算机科学与工程系
作者单位
Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
He, Cheng,Tan, Hao,Huang, Shihua,et al. Efficient evolutionary neural architecture search by modular inheritable crossover[J]. Swarm and Evolutionary Computation,2021,64.
APA
He, Cheng,Tan, Hao,Huang, Shihua,&Cheng, Ran.(2021).Efficient evolutionary neural architecture search by modular inheritable crossover.Swarm and Evolutionary Computation,64.
MLA
He, Cheng,et al."Efficient evolutionary neural architecture search by modular inheritable crossover".Swarm and Evolutionary Computation 64(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
19.Efficient evoluti(1535KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He, Cheng]的文章
[Tan, Hao]的文章
[Huang, Shihua]的文章
百度学术
百度学术中相似的文章
[He, Cheng]的文章
[Tan, Hao]的文章
[Huang, Shihua]的文章
必应学术
必应学术中相似的文章
[He, Cheng]的文章
[Tan, Hao]的文章
[Huang, Shihua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。