中文版 | English
题名

Deep 3D human pose estimation: A review

作者
通讯作者Zheng,Feng
发表日期
2021-09-01
DOI
发表期刊
ISSN
1077-3142
EISSN
1090-235X
卷号210
摘要

Three-dimensional (3D) human pose estimation involves estimating the articulated 3D joint locations of a human body from an image or video. Due to its widespread applications in a great variety of areas, such as human motion analysis, human–computer interaction, robots, 3D human pose estimation has recently attracted increasing attention in the computer vision community, however, it is a challenging task due to depth ambiguities and the lack of in-the-wild datasets. A large number of approaches, with many based on deep learning, have been developed over the past decade, largely advancing the performance on existing benchmarks. To guide future development, a comprehensive literature review is highly desired in this area. However, existing surveys on 3D human pose estimation mainly focus on traditional methods and a comprehensive review on deep learning based methods remains lacking in the literature. In this paper, we provide a thorough review of existing deep learning based works for 3D pose estimation, summarize the advantages and disadvantages of these methods and provide an in-depth understanding of this area. Furthermore, we also explore the commonly-used benchmark datasets on which we conduct a comprehensive study for comparison and analysis. Our study sheds light on the state of research development in 3D human pose estimation and provides insights that can facilitate the future design of models and algorithms.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000691995600009
EI入藏号
20212610571595
EI主题词
Benchmarking ; Deep learning ; Human computer interaction ; Human robot interaction ; Learning systems
EI分类号
Data Processing and Image Processing:723.2 ; Robotics:731.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85108682742
来源库
Scopus
引用统计
被引频次[WOS]:127
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/230143
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,518055,China
2.Inception Institute of Artificial Intelligence,Abu Dhabi,United Arab Emirates
3.Department of Electronics and Information Engineering,Anhui University,230601,China
4.Harbin Institute of Technology (Shenzhen),China
5.AIM Lab,University of Amsterdam,Netherlands
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang,Jinbao,Tan,Shujie,Zhen,Xiantong,et al. Deep 3D human pose estimation: A review[J]. COMPUTER VISION AND IMAGE UNDERSTANDING,2021,210.
APA
Wang,Jinbao.,Tan,Shujie.,Zhen,Xiantong.,Xu,Shuo.,Zheng,Feng.,...&Shao,Ling.(2021).Deep 3D human pose estimation: A review.COMPUTER VISION AND IMAGE UNDERSTANDING,210.
MLA
Wang,Jinbao,et al."Deep 3D human pose estimation: A review".COMPUTER VISION AND IMAGE UNDERSTANDING 210(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Jinbao]的文章
[Tan,Shujie]的文章
[Zhen,Xiantong]的文章
百度学术
百度学术中相似的文章
[Wang,Jinbao]的文章
[Tan,Shujie]的文章
[Zhen,Xiantong]的文章
必应学术
必应学术中相似的文章
[Wang,Jinbao]的文章
[Tan,Shujie]的文章
[Zhen,Xiantong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。