中文版 | English
题名

Pioneer selection for evolutionary multiobjective optimization with discontinuous feasible region

作者
通讯作者Pan,Linqiang
发表日期
2021-08-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号65
摘要

Constrained multiobjective optimization problems (CMOPs) are widespread in real-world applications. Nevertheless, CMOPs with discontinuous feasible regions are challenging for existing evolutionary algorithms due to the difficulty of passing through the infeasible regions. Moreover, there are only several benchmark test problems specified for promoting the research in complex constrained multiobjective optimization. To address these two issues, we first propose a set of CMOPs with discontinuous feasible regions by introducing constraints into the widely used DTLZ test problems, and then a pioneer selection strategy is designed to handle these complex constrained optimization problems. The general idea of the proposed constraint handling strategy is simple, which selects some individuals in the population as the pioneer population, aiming to obtain some well-converged solutions without considering the constraints. By adjusting the ratio of the pioneer solutions during the evaluation, the quasi-optimal solutions are expected to approximate the Pareto optimal front. To investigate the performance of the proposed strategy, it is embedded in a classic evolutionary algorithm and compared with three state-of-the-art constrained multiobjective evolutionary algorithms. Experimental results demonstrate the effectiveness of the proposed strategy and also show that the proposed benchmark problems are challenging for existing approaches.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61772214,61903178,61906081]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000680430000014
出版者
EI入藏号
20212610575086
EI主题词
Benchmarking ; Constrained optimization ; Multiobjective optimization ; Pareto principle
EI分类号
Optimization Techniques:921.5 ; Systems Science:961
Scopus记录号
2-s2.0-85108841618
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/230153
专题工学院_计算机科学与工程系
作者单位
1.Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China,School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan,430074,China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Li,Lianghao,He,Cheng,Xu,Wenting,et al. Pioneer selection for evolutionary multiobjective optimization with discontinuous feasible region[J]. Swarm and Evolutionary Computation,2021,65.
APA
Li,Lianghao,He,Cheng,Xu,Wenting,&Pan,Linqiang.(2021).Pioneer selection for evolutionary multiobjective optimization with discontinuous feasible region.Swarm and Evolutionary Computation,65.
MLA
Li,Lianghao,et al."Pioneer selection for evolutionary multiobjective optimization with discontinuous feasible region".Swarm and Evolutionary Computation 65(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Lianghao]的文章
[He,Cheng]的文章
[Xu,Wenting]的文章
百度学术
百度学术中相似的文章
[Li,Lianghao]的文章
[He,Cheng]的文章
[Xu,Wenting]的文章
必应学术
必应学术中相似的文章
[Li,Lianghao]的文章
[He,Cheng]的文章
[Xu,Wenting]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。