中文版 | English
题名

Exponential evolution mechanism for in vivo computation

作者
通讯作者Chen,Yifan
发表日期
2021-08-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号65
摘要

We have proposed a novel framework of in vivo computation, which is used for tumor sensitization and targeting (TST) in our previous investigations. In the framework, the process of nanorobots-assisted TST is rendered into an in vivo optimization problem, where nanorobots are utilized as computing agents; the tumor targeted can be seen as the global optimal solution; the high-risk tissue plays the role of the search space; and the tumor-triggered biological gradient field (BGF) provides the aided knowledge for fitness evaluation. Our previous works have proposed the weak priority evolution strategy (WP-ES) to adapt to the actuating mode of the homogeneous magnetic field used in the state-of-the-art nanorobot control platforms. Though the previous works provide an optimal movement direction for the nanorobots at each update, the step size for each iteration, which is called the evolution mechanism in this paper, has not been studied. It is an important issue as the evolution mechanism of computing agents is a fundamental problem for both in vivo computation and mathematical optimization. To account for this issue, we propose an exponential evolution mechanism, which is used to adjust the step size of the nanorobots during each actuation period. To demonstrate the effectiveness of the evolution mechanism and choose the optimal parameter setting, we perform comprehensive simulation examples by introducing the mechanism into the WP-ES based swarm intelligence algorithms considering the realistic internal constraints. The performance is compared against that of the brute-force search, which represents the traditional systemic targeting method in terms of tumor targeting, and it is also compared against that of the WP-ES based swarm intelligence algorithms without the evolution mechanism. Results from the computational experiments verify the effectiveness of the exponential evolution mechanism for most of the representative BGF landscapes.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[62071101] ; Special Science Foundation of Quzhou[2020D002] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000680430000013
出版者
EI入藏号
20212610575816
EI主题词
Iterative methods ; Nanorobotics ; Nanorobots ; Optimization ; Swarm intelligence ; Tumors
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Biology:461.9 ; Robotics:731.5 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85108790039
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/230154
专题工学院_计算机科学与工程系
作者单位
1.Yangtze Delta Region Institute (Quzhou),University of Electronic Science and Technology of China,Quzhou,324000,China
2.School of Life Science and Technology,the University of Electronic Science and Technology of China,Chengdu,611731,China
3.Division of Health,Engineering,Computing and Science,the University of Waikato,Hamilton,3240,New Zealand
4.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
5.School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu,611731,China
推荐引用方式
GB/T 7714
Shi,Shaolong,Chen,Yifan,Yao,Xin,et al. Exponential evolution mechanism for in vivo computation[J]. Swarm and Evolutionary Computation,2021,65.
APA
Shi,Shaolong,Chen,Yifan,Yao,Xin,&Liu,Qiang.(2021).Exponential evolution mechanism for in vivo computation.Swarm and Evolutionary Computation,65.
MLA
Shi,Shaolong,et al."Exponential evolution mechanism for in vivo computation".Swarm and Evolutionary Computation 65(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shi,Shaolong]的文章
[Chen,Yifan]的文章
[Yao,Xin]的文章
百度学术
百度学术中相似的文章
[Shi,Shaolong]的文章
[Chen,Yifan]的文章
[Yao,Xin]的文章
必应学术
必应学术中相似的文章
[Shi,Shaolong]的文章
[Chen,Yifan]的文章
[Yao,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。