中文版 | English
题名

Lithology identification from well log curves via neural networks with additional geological constraint

作者
通讯作者Zhang,Dongxiao
发表日期
2021-06-24
DOI
发表期刊
ISSN
0016-8033
EISSN
1942-2156
卷号86期号:5
摘要
Lithology identification is of great importance in reservoir characterization. Recently, many researchers have applied machine learning techniques to solve lithology identification problems from well log curves, and their works show three main characteristics. First, most works predict lithofacies using features measured during logging, while very few consider adding stratigraphic sequence information that is available prior to drilling to solve this problem. Second, most studies predict lithofacies using measured properties of one depth point, while few take the influence of the neighboring formation into account. Third, due to a lack of publicly available interpreted well log data, previous research has concentrated on applying different algorithms on their private dataset, making it impossible to perform a comparison. We propose a machine learning framework to solve the lithology classification problem from well log curves by incorporating an additional geological constraint. The constraint is a stratigraphic unit, and we use it as an additional feature. We evaluated three types of recurrent neural networks (RNNs), bidirectional long short-term memory (Bi-LSTM), bidirectional gated recurrent unit (Bi-GRU), GRU-based encoder-decoder architecture with attention (ABi-GRU), and two types of one-dimensional convolutional networks (1D CNNs), temporal convolutional networks (TCN) and multi-scale residual networks (MsRNet) on a publicly available dataset from the North Sea. Both RNN-based networks and 1D CNN-based networks can process sequential data, enabling the model to have access to information from neighboring formations when performing lithofacies prediction at a particular depth. Our experiments show that geological constraint improves the performance of the models significantly, and that the overall performance of RNN-based networks is better and more consistent.
关键词
相关链接[Scopus记录]
收录类别
EI ; SCI
语种
英语
学校署名
通讯
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000711980200016
出版者
EI入藏号
20212610570115
EI主题词
Convolution ; Convolutional neural networks ; Drilling machines (machine tools) ; Forecasting ; Lithology ; Logging while drilling ; Machine learning ; Stratigraphy ; Turing machines
EI分类号
Geology:481.1 ; Machine Tools, General:603.1 ; Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85108675832
来源库
Scopus
引用统计
被引频次[WOS]:30
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/230172
专题工学院_环境科学与工程学院
作者单位
1.Intelligent Energy Laboratory,Frontier Research Center,Peng Cheng Laboratory,China
2.School of Environmental Science and Engineering,Southern University of Science and Technology,China
3.Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Jiang,Chunbi,Zhang,Dongxiao,Chen,Shifeng. Lithology identification from well log curves via neural networks with additional geological constraint[J]. GEOPHYSICS,2021,86(5).
APA
Jiang,Chunbi,Zhang,Dongxiao,&Chen,Shifeng.(2021).Lithology identification from well log curves via neural networks with additional geological constraint.GEOPHYSICS,86(5).
MLA
Jiang,Chunbi,et al."Lithology identification from well log curves via neural networks with additional geological constraint".GEOPHYSICS 86.5(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Chunbi]的文章
[Zhang,Dongxiao]的文章
[Chen,Shifeng]的文章
百度学术
百度学术中相似的文章
[Jiang,Chunbi]的文章
[Zhang,Dongxiao]的文章
[Chen,Shifeng]的文章
必应学术
必应学术中相似的文章
[Jiang,Chunbi]的文章
[Zhang,Dongxiao]的文章
[Chen,Shifeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。