题名 | Speech modality classification with cortical EEG signals |
作者 | |
通讯作者 | Chen,Fei |
DOI | |
发表日期 | 2021-05-04
|
会议名称 | 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER)
|
ISSN | 1948-3546
|
EISSN | 1948-3554
|
ISBN | 978-1-7281-4338-5
|
会议录名称 | |
卷号 | 2021-May
|
页码 | 69-72
|
会议日期 | 4-6 May 2021
|
会议地点 | Italy
|
摘要 | The present work aimed to classify three speech modalities (i.e., spoken speech, intended speech and imagined speech) by using their corresponding cortical EEG signals. Eleven participants were recruited to take part in the experiments to produce 70 Mandarin-Chinese monosyllables in different speech modalities. The EEG signals were recorded during the experiments and processed by discrete wavelet transform (DWT), and the extracted features were selected by a minimum redundancy maximum relevance (MRMR) algorithm. Finally, 50 selected features were trained and tested by a multi-class Support Vector Machine for the task of speech modality classification. The average classification accuracy across participants for distinguishing three speech modalities was 66.0%, with pairwise classification accuracies ranging from 71.5% to 85.7%. The results of this work demonstrated the feasibility of identifying different speech modalities in speech-based BCIs by employing EEG signals. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS记录号 | WOS:000681358200013
|
EI入藏号 | 20212410486639
|
EI主题词 | Discrete wavelet transforms
; Speech
; Support vector machines
|
EI分类号 | Information Theory and Signal Processing:716.1
; Computer Software, Data Handling and Applications:723
; Speech:751.5
; Mathematical Transformations:921.3
|
Scopus记录号 | 2-s2.0-85107462702
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9441137 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/230212 |
专题 | 工学院_电子与电气工程系 |
作者单位 | Southern University of Science and Technology,Department of Electrical and Electronic Engineering,Shenzhen,518055,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Pan,Changjie,Liu,Zhixing,Chen,Fei. Speech modality classification with cortical EEG signals[C],2021:69-72.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Speech_Modality_Clas(348KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论