题名 | Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information |
作者 | |
通讯作者 | Ye,Caichao; Yang,Jiong |
发表日期 | 2021
|
DOI | |
发表期刊 | |
EISSN | 2470-1343
|
卷号 | 6页码:14533−14541 |
摘要 | It is well believed that machine learning models could help to predict the formation energies of materials if all elemental and crystal structural details are known. In this paper, it is shown that even without detailed crystal structure information, the formation energies of binary compounds in various prototypes at the ground states can be reasonably evaluated using machine-learning feature abstraction to screen out the important features. By combining with the "white-box"sure independence screening and sparsifying operator (SISSO) approach, an interpretable and accurate formation energy model is constructed. The predicted formation energies of 183 experimental and 439 calculated stable binary compounds (Ehull = 0) are predicted using this model, and both show reasonable agreements with experimental and Materials Project's calculated values. The descriptor set is capable of reflecting the formation energies of binary compounds and is also consistent with the common understanding that the formation energy is mainly determined by electronegativity, electron affinity, bond energy, and other atomic properties. As crystal structure parameters are not necessary prerequisites, it can be widely applied to the formation energy prediction and classification of binary compounds in large quantities. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS记录号 | WOS:000661452700058
|
Scopus记录号 | 2-s2.0-85108596116
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:22
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/230236 |
专题 | 理学院_物理系 前沿与交叉科学研究院 |
作者单位 | 1.Department of Physics and Guangdong Provincial,Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China 2.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China 3.Materials Genome Institute,Shanghai University,Shanghai,200444,China 4.Key Laboratory of Energy Conversion and Storage Technologies,Southern University of Science and Technology,Ministry of Education,Shenzhen,518055,China 5.Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 物理系 |
通讯作者单位 | 物理系; 前沿与交叉科学研究院; 南方科技大学 |
第一作者的第一单位 | 物理系 |
推荐引用方式 GB/T 7714 |
Mao,Yuanqing,Yang,Hongliang,Sheng,Ye,et al. Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information[J]. ACS Omega,2021,6:14533−14541.
|
APA |
Mao,Yuanqing.,Yang,Hongliang.,Sheng,Ye.,Wang,Jiping.,Ouyang,Runhai.,...&Zhang,Wenqing.(2021).Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information.ACS Omega,6,14533−14541.
|
MLA |
Mao,Yuanqing,et al."Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information".ACS Omega 6(2021):14533−14541.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
31. acsomega.1c01517(9623KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论