中文版 | English
题名

Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information

作者
通讯作者Ye,Caichao; Yang,Jiong
发表日期
2021
DOI
发表期刊
EISSN
2470-1343
卷号6页码:14533−14541
摘要

It is well believed that machine learning models could help to predict the formation energies of materials if all elemental and crystal structural details are known. In this paper, it is shown that even without detailed crystal structure information, the formation energies of binary compounds in various prototypes at the ground states can be reasonably evaluated using machine-learning feature abstraction to screen out the important features. By combining with the "white-box"sure independence screening and sparsifying operator (SISSO) approach, an interpretable and accurate formation energy model is constructed. The predicted formation energies of 183 experimental and 439 calculated stable binary compounds (Ehull = 0) are predicted using this model, and both show reasonable agreements with experimental and Materials Project's calculated values. The descriptor set is capable of reflecting the formation energies of binary compounds and is also consistent with the common understanding that the formation energy is mainly determined by electronegativity, electron affinity, bond energy, and other atomic properties. As crystal structure parameters are not necessary prerequisites, it can be widely applied to the formation energy prediction and classification of binary compounds in large quantities.

相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000661452700058
Scopus记录号
2-s2.0-85108596116
来源库
Scopus
引用统计
被引频次[WOS]:22
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/230236
专题理学院_物理系
前沿与交叉科学研究院
作者单位
1.Department of Physics and Guangdong Provincial,Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China
2.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China
3.Materials Genome Institute,Shanghai University,Shanghai,200444,China
4.Key Laboratory of Energy Conversion and Storage Technologies,Southern University of Science and Technology,Ministry of Education,Shenzhen,518055,China
5.Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位物理系
通讯作者单位物理系;  前沿与交叉科学研究院;  南方科技大学
第一作者的第一单位物理系
推荐引用方式
GB/T 7714
Mao,Yuanqing,Yang,Hongliang,Sheng,Ye,et al. Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information[J]. ACS Omega,2021,6:14533−14541.
APA
Mao,Yuanqing.,Yang,Hongliang.,Sheng,Ye.,Wang,Jiping.,Ouyang,Runhai.,...&Zhang,Wenqing.(2021).Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information.ACS Omega,6,14533−14541.
MLA
Mao,Yuanqing,et al."Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information".ACS Omega 6(2021):14533−14541.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
31. acsomega.1c01517(9623KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mao,Yuanqing]的文章
[Yang,Hongliang]的文章
[Sheng,Ye]的文章
百度学术
百度学术中相似的文章
[Mao,Yuanqing]的文章
[Yang,Hongliang]的文章
[Sheng,Ye]的文章
必应学术
必应学术中相似的文章
[Mao,Yuanqing]的文章
[Yang,Hongliang]的文章
[Sheng,Ye]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 31. acsomega.1c01517.pdf
格式: Adobe PDF
文件名: 31. acsomega.1c01517.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。