中文版 | English
题名

An Introduction to Optimal Control of FBSDE with Incomplete Information Introduction

作者
发表日期
2018
ISBN
978-3-319-79038-1(print) ; 978-3-319-79039-8(online)
来源专著
出版地
233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES
出版者
页码
1-25
摘要

Stochastic optimal control with incomplete information is composed of filtering and control. The filtering part is related to two stochastic processes: signal and observation. The signal process is what we want to estimate based on the observation which provides the information we can use. Kalman–Bucy filtering is the most successful result in linear filtering theory, which was obtained by Kalman and Bucy [38]. Nonlinear filtering is much more difficult to study. There have been two essentially different approaches so far. One is based on the innovation process, an observable Brownian motion, with the martingale representation theorem. This theory achieved its culmination with the celebrated paper of Fujisaki et al. [25]. See also Liptser and Shiryayev [49] and Kallianpur [36] for a systematic account of this approach. Another approach was introduced by Duncan [18], Mortensen [56], and Zakai [112] independently, who derived a linear stochastic partial differential equation (SPDE) satisfied by the unnormalized conditional density function of the signal. This SPDE is called the Duncan–Mortensen–Zakai equation, or, simply, Zakai’s equation. Unlike the Kalman–Bucy filtering, nonlinear filtering results in infinite-dimensional stochastic processes, whose analytical solutions are rarely available in general. Much effort has been devoted to finding finite-dimensional filters and numerical schemes. See, e.g., Benes̆ [5], Wonham [98], Xiong [104], and Bain and Crisan [2] for the development of this aspect.

WOS记录号
WOS:000442068600002
DOI
语种
英语
收录类别
学校署名
其他
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型著作章节
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/23859
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Shandong Univ, Sch Control Sci & Engn, Jinan, Shandong, Peoples R China;
2.Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China;
3.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Wang, Guangchen,Wu, Zhen,Xiong, Jie. An Introduction to Optimal Control of FBSDE with Incomplete Information Introduction. 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES:SPRINGER,2018:1-25.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Guangchen]的文章
[Wu, Zhen]的文章
[Xiong, Jie]的文章
百度学术
百度学术中相似的文章
[Wang, Guangchen]的文章
[Wu, Zhen]的文章
[Xiong, Jie]的文章
必应学术
必应学术中相似的文章
[Wang, Guangchen]的文章
[Wu, Zhen]的文章
[Xiong, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。