中文版 | English
题名

Correlation between Spin and Orbital Dynamics during Laser-Induced Femtosecond Demagnetization

作者
通讯作者Zhang, G. P.
发表日期
2021-07-08
DOI
发表期刊
ISSN
1932-7447
EISSN
1932-7455
卷号125期号:26页码:14461-14467
摘要
Spin and orbital angular momenta are two intrinsic properties of an electron and are responsible for the physics of a solid. How the spin and orbital evolve with respect to each other on several hundred femtoseconds is largely unknown, but it is at the center of laser-induced ultrafast demagnetization. In this paper, we introduce a concept of the spin-orbital correlation diagram, where spin angular momentum is plotted against orbital angular momentum, much like the position-velocity phase diagram in classical mechanics. We use four sets of highly accurate time-resolved X-ray magnetic circular dichroism data to construct four correlation diagrams for iron and cobalt. To our surprise, a pattern emerges. The trace on the correlation diagram for iron is an arc, and at the end of demagnetization, it has a pronounced cusp. The correlation diagram for cobalt is different and appears more linear but with kinks. We carry out first-principles calculations with two different methods: time-dependent density functional theory (TDDFT) and time-dependent Liouville density functional theory. These two methods agree that the experimental findings for both Fe and Co are not due to experimental errors. It is the spin-orbit coupling that correlates the spin dynamics to the orbital dynamics. Microscopically, Fe and Co have different orbital occupations, which leads to distinctive correlation diagrams. We believe that this correlation diagram presents a useful tool to better understand spin and orbital dynamics on an ultrafast time scale. A brief discussion on the magnetic anisotropy energy is also provided.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
U.S. Department of Energy[DE-FG02-06ER46304] ; Office of Science of the U.S. Department of Energy[DE-AC02-05CH11231]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目
Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号
WOS:000672734100033
出版者
EI入藏号
20212910658027
EI主题词
Angular momentum ; Calculations ; Cobalt ; Cobalt metallography ; Demagnetization ; Density functional theory ; Dichroism ; Femtosecond lasers ; Iron ; Iron metallography ; Magnetic anisotropy ; Spin orbit coupling
EI分类号
Iron:545.1 ; Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals:549.3 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Light/Optics:741.1 ; Mathematics:921 ; Atomic and Molecular Physics:931.3
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/240243
专题理学院_物理系
作者单位
1.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
2.Indiana State Univ, Off Informat Technol, Terre Haute, IN 47809 USA
3.Indiana State Univ, Dept Phys, Terre Haute, IN 47809 USA
4.Univ Missouri, Dept Chem & Biochem, St Louis, MO 63121 USA
5.Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA
推荐引用方式
GB/T 7714
Zhang, G. P.,Gu, Mingqiang,Bai, Y. H.,et al. Correlation between Spin and Orbital Dynamics during Laser-Induced Femtosecond Demagnetization[J]. Journal of Physical Chemistry C,2021,125(26):14461-14467.
APA
Zhang, G. P.,Gu, Mingqiang,Bai, Y. H.,Jenkins, T. L.,&George, Thomas F..(2021).Correlation between Spin and Orbital Dynamics during Laser-Induced Femtosecond Demagnetization.Journal of Physical Chemistry C,125(26),14461-14467.
MLA
Zhang, G. P.,et al."Correlation between Spin and Orbital Dynamics during Laser-Induced Femtosecond Demagnetization".Journal of Physical Chemistry C 125.26(2021):14461-14467.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, G. P.]的文章
[Gu, Mingqiang]的文章
[Bai, Y. H.]的文章
百度学术
百度学术中相似的文章
[Zhang, G. P.]的文章
[Gu, Mingqiang]的文章
[Bai, Y. H.]的文章
必应学术
必应学术中相似的文章
[Zhang, G. P.]的文章
[Gu, Mingqiang]的文章
[Bai, Y. H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。