中文版 | English
题名

Fuzzy Style K-Plane Clustering

作者
通讯作者Wang, Shitong
发表日期
2021-06-01
DOI
发表期刊
ISSN
1063-6706
EISSN
1941-0034
卷号29期号:6页码:1518-1532
摘要
As the first attempt, this article considers how to provide a design methodology for style clustering on stylistic data, where each cluster depends on both the similarities between data samples and its latently or apparently distinguishable style. By taking our previous fuzzy k plane clustering algorithm as the basic framework, a fuzzy style k-plane clustering (S-KPC) algorithm is proposed to have its distinctive merits: First, the nuances between styles of clusters can be well identified by using the proposed twofold data representation. That is to say, style matrices are used to express the structure, hence style information of each cluster, whereas the augmentation of the original features of data with enhanced nodes is taken as an abstract representation so as to move the manifold structure of data apart. Such a twofold data representation can make us realize S-KPC readily in an incremental way. Second, by means of alternating optimization strategy, the objective function of S-KPC can be optimized such that each discriminant function of each cluster shares the advantages of both simple regression models and functional-link neural networks. Extensive experiments on synthetic and real-world datasets demonstrate that S-KPC has comparable clustering performance with several compared methods on the adopted ordinary datasets, and yet it obviously outperforms them on stylistic datasets.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61572236,61772198,61972181] ; NSFC-JSPS[61711540041] ; Natural Science Foundation of Jiangsu Province[BK20191331] ; National First-Class Discipline Program of Light Industry and Engineering["LITE2018","CJ20190016"]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000658338600017
出版者
EI入藏号
20212310477120
EI主题词
Regression analysis
EI分类号
Information Sources and Analysis:903.1 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/240261
专题工学院_计算机科学与工程系
作者单位
1.Jiangnan Univ, Sch Digital Media, Wuxi 214122, Jiangsu, Peoples R China
2.Osaka Prefecture Univ, Dept Comp Sci, Osaka 5998531, Japan
3.South Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
4.Software Technol Jiangsu, Key Lab Media Design, Wuxi 214122, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Gu, Suhang,Nojima, Yusuke,Ishibuchi, Hisao,et al. Fuzzy Style K-Plane Clustering[J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS,2021,29(6):1518-1532.
APA
Gu, Suhang,Nojima, Yusuke,Ishibuchi, Hisao,&Wang, Shitong.(2021).Fuzzy Style K-Plane Clustering.IEEE TRANSACTIONS ON FUZZY SYSTEMS,29(6),1518-1532.
MLA
Gu, Suhang,et al."Fuzzy Style K-Plane Clustering".IEEE TRANSACTIONS ON FUZZY SYSTEMS 29.6(2021):1518-1532.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gu, Suhang]的文章
[Nojima, Yusuke]的文章
[Ishibuchi, Hisao]的文章
百度学术
百度学术中相似的文章
[Gu, Suhang]的文章
[Nojima, Yusuke]的文章
[Ishibuchi, Hisao]的文章
必应学术
必应学术中相似的文章
[Gu, Suhang]的文章
[Nojima, Yusuke]的文章
[Ishibuchi, Hisao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。