中文版 | English
题名

Theory-guided Auto-Encoder for surrogate construction and inverse modeling

作者
通讯作者Chang,Haibin
发表日期
2021-11-01
DOI
发表期刊
ISSN
0045-7825
卷号385
摘要

A Theory-guided Auto-Encoder (TgAE) framework is proposed for surrogate construction, and is further used for uncertainty quantification and inverse modeling tasks. The framework is built based on the Auto-Encoder (or Encoder–Decoder) architecture of the convolutional neural network (CNN) via a theory-guided training process. In order to incorporate physical constraints for achieving theory-guided training, the governing equations of the studied problems can be discretized by the finite difference scheme, and then be embedded into the training of the CNN. The residual of the discretized governing equations, as well as the data mismatch, constitute the loss function of the TgAE. The trained TgAE can be utilized to construct a surrogate that approximates the relationship between the model parameters and model responses with limited labeled data. Several subsurface flow cases are designed to test the performance of the TgAE. The results demonstrate that satisfactory accuracy for surrogate modeling and higher efficiency for uncertainty quantification tasks can be achieved with the TgAE. The TgAE also shows good extrapolation ability for cases with different correlation lengths and variances. Furthermore, inverse modeling tasks are also implemented with the TgAE surrogate, and satisfactory results are obtained.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000691787800002
EI入藏号
20213010684399
EI主题词
Convolution ; Finite difference method ; Inverse problems ; Learning systems ; Neural networks ; Signal encoding
EI分类号
Information Theory and Signal Processing:716.1 ; Numerical Methods:921.6 ; Probability Theory:922.1
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85111017247
来源库
Scopus
引用统计
被引频次[WOS]:45
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/241815
专题工学院_环境科学与工程学院
作者单位
1.BIC-ESAT,ERE,and SKLTCS,College of Engineering,Peking University,Beijing,100871,China
2.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Wang,Nanzhe,Chang,Haibin,Zhang,Dongxiao. Theory-guided Auto-Encoder for surrogate construction and inverse modeling[J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,2021,385.
APA
Wang,Nanzhe,Chang,Haibin,&Zhang,Dongxiao.(2021).Theory-guided Auto-Encoder for surrogate construction and inverse modeling.COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,385.
MLA
Wang,Nanzhe,et al."Theory-guided Auto-Encoder for surrogate construction and inverse modeling".COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 385(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
百度学术
百度学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
必应学术
必应学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Zhang,Dongxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。