中文版 | English
题名

ALBFL: A novel neural ranking model for software fault localization via combining static and dynamic features

作者
通讯作者Hu,Guangwu
发表日期
2021-11-01
DOI
发表期刊
ISSN
0950-5849
卷号139
摘要
Context: Automatic software fault localization serves as a significant purpose in helping developers solve bugs efficiently. Existing approaches for software fault localization can be categorized into static methods and dynamic ones, which have improved the fault locating ability greatly by analyzing static features from the source code or tracking dynamic behaviors during the runtime respectively. However, the accuracy of fault localization is still unsatisfactory. Objective: To enhance the capability of detecting software faults with the statement granularity, this paper puts forward ALBFL, a novel neural ranking model that combines the static and dynamic features, which obtains excellent fault localization accuracy. Firstly, ALBFL learns the semantic features of the source code by a transformer encoder. Then, it exploits a self-attention layer to integrate those static features and dynamic features. Finally, those integrated features are fed into a LambdaRank model, which can list the suspicious statements in descending order by their ranked scores. Method: The experiments are conducted on an authoritative dataset (i.e., Defect4J), which includes 5 open-source projects, 357 faulty programs in total. We evaluate the effectiveness of ALBFL, effectiveness of combining features, effectiveness of model components and aggregation on method level. Result: The results reflect that ALBFL identifies triple more faulty statements than 11 traditional SBFL methods and outperforms 2 state-of-the-art approaches by on average 14% on ranking faults in the first position. Conclusions: To improve the precision of automatic software fault localization, ALBFL combines neural network ranking model equipped with the self-attention layer and the transformer encoder, which can take full use of various techniques to judge whether a code statement is fault-inducing or not. Moreover, the joint architecture of ALBFL is capable of training the integration of these features under various strategies so as to improve accuracy further. In the future, we plan to exploit more features so as to improve our method's efficiency and accuracy.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000697678300011
EI入藏号
20212810611052
EI主题词
Codes (symbols) ; Multilayer neural networks ; Open source software ; Program debugging ; Semantics ; Signal encoding
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Software, Data Handling and Applications:723
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85109192969
来源库
Scopus
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/241820
专题南方科技大学
未来网络研究院
作者单位
1.Tsinghua Shenzhen International Graduate School,Tsinghua University,Shenzhen,China
2.School of Information Technology & Management,University of International Business and Economics,Beijing,China
3.Cyberspace Security Research Center,Peng Cheng Laboratory,Shenzhen,China
4.School of Computer Science,Shenzhen Institute of Information Technology,Shenzhen,China
5.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Xiao,Xi,Pan,Yuqing,Zhang,Bin,et al. ALBFL: A novel neural ranking model for software fault localization via combining static and dynamic features[J]. INFORMATION AND SOFTWARE TECHNOLOGY,2021,139.
APA
Xiao,Xi,Pan,Yuqing,Zhang,Bin,Hu,Guangwu,Li,Qing,&Lu,Runiu.(2021).ALBFL: A novel neural ranking model for software fault localization via combining static and dynamic features.INFORMATION AND SOFTWARE TECHNOLOGY,139.
MLA
Xiao,Xi,et al."ALBFL: A novel neural ranking model for software fault localization via combining static and dynamic features".INFORMATION AND SOFTWARE TECHNOLOGY 139(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao,Xi]的文章
[Pan,Yuqing]的文章
[Zhang,Bin]的文章
百度学术
百度学术中相似的文章
[Xiao,Xi]的文章
[Pan,Yuqing]的文章
[Zhang,Bin]的文章
必应学术
必应学术中相似的文章
[Xiao,Xi]的文章
[Pan,Yuqing]的文章
[Zhang,Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。