中文版 | English
题名

Feature learning and patch matching for diverse image inpainting

作者
通讯作者Zeng,Yuan; Gong,Yi
发表日期
2021-11-01
DOI
发表期刊
ISSN
0031-3203
EISSN
1873-5142
卷号119
摘要

We present an image inpainting approach to generate diverse high-quality inpainting results. Recent advances in deep adversarial networks have led to significant improvements in the challenging task of filling large holes in natural images. Although deep generative models can generate visually plausible structures and textures, most of them are not interpretable, making it difficult to control the inpainting output. In addition, deep generative models do not have capacity to produce diverse results for each input. To address such limitations, we design a novel free-form image inpainting framework with two sequential steps: the first step formulates the inpainting process as a regression problem and utilizes a U-Net-like convolutional neural network to map an input to a coarse inpainting output, and the second step utilizes the nearest neighbor based pixel-wise matching to map the coarse output to diverse high-quality outputs. The second step allows our approach to compose novel high-quality content by copy-pasting high-frequency missing information from different training exemplars. Experiments on multiple datasets, i.e., CelebA-HQ, AFHQ, and Paris StreetView, show that our approach is able to offer multiple natural outputs with higher diversity in a controllable manner.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key R&D Program of China[2019YFB1802800] ; Guangdong Science and Technology Program[2019A1515110479] ; Guangdong Basic and Applied Basic Research Foundation[2019B1515130003] ; Education Commission of Guangdong["2020ZDZX3057","2019KQNCX128"] ; Shenzhen Science and Technology Research Project[JCYJ20180507181527806]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000687338900012
出版者
EI入藏号
20212410508200
EI主题词
Convolutional neural networks ; Image enhancement ; Textures
EI分类号
Artificial Intelligence:723.4
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85107725402
来源库
Scopus
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/241823
专题前沿与交叉科学研究院
工学院_计算机科学与工程系
作者单位
1.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology (SUSTech),Shenzhen 518055,China
2.University Key Laboratory of Advanced Wireless Communications of Guangdong Province,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位前沿与交叉科学研究院
通讯作者单位前沿与交叉科学研究院;  南方科技大学
第一作者的第一单位前沿与交叉科学研究院
推荐引用方式
GB/T 7714
Zeng,Yuan,Gong,Yi,Zhang,Jin. Feature learning and patch matching for diverse image inpainting[J]. PATTERN RECOGNITION,2021,119.
APA
Zeng,Yuan,Gong,Yi,&Zhang,Jin.(2021).Feature learning and patch matching for diverse image inpainting.PATTERN RECOGNITION,119.
MLA
Zeng,Yuan,et al."Feature learning and patch matching for diverse image inpainting".PATTERN RECOGNITION 119(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1-s2.0-S003132032100(5110KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng,Yuan]的文章
[Gong,Yi]的文章
[Zhang,Jin]的文章
百度学术
百度学术中相似的文章
[Zeng,Yuan]的文章
[Gong,Yi]的文章
[Zhang,Jin]的文章
必应学术
必应学术中相似的文章
[Zeng,Yuan]的文章
[Gong,Yi]的文章
[Zhang,Jin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。