题名 | Feature learning and patch matching for diverse image inpainting |
作者 | |
通讯作者 | Zeng,Yuan; Gong,Yi |
发表日期 | 2021-11-01
|
DOI | |
发表期刊 | |
ISSN | 0031-3203
|
EISSN | 1873-5142
|
卷号 | 119 |
摘要 | We present an image inpainting approach to generate diverse high-quality inpainting results. Recent advances in deep adversarial networks have led to significant improvements in the challenging task of filling large holes in natural images. Although deep generative models can generate visually plausible structures and textures, most of them are not interpretable, making it difficult to control the inpainting output. In addition, deep generative models do not have capacity to produce diverse results for each input. To address such limitations, we design a novel free-form image inpainting framework with two sequential steps: the first step formulates the inpainting process as a regression problem and utilizes a U-Net-like convolutional neural network to map an input to a coarse inpainting output, and the second step utilizes the nearest neighbor based pixel-wise matching to map the coarse output to diverse high-quality outputs. The second step allows our approach to compose novel high-quality content by copy-pasting high-frequency missing information from different training exemplars. Experiments on multiple datasets, i.e., CelebA-HQ, AFHQ, and Paris StreetView, show that our approach is able to offer multiple natural outputs with higher diversity in a controllable manner. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Key R&D Program of China[2019YFB1802800]
; Guangdong Science and Technology Program[2019A1515110479]
; Guangdong Basic and Applied Basic Research Foundation[2019B1515130003]
; Education Commission of Guangdong["2020ZDZX3057","2019KQNCX128"]
; Shenzhen Science and Technology Research Project[JCYJ20180507181527806]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000687338900012
|
出版者 | |
EI入藏号 | 20212410508200
|
EI主题词 | Convolutional neural networks
; Image enhancement
; Textures
|
EI分类号 | Artificial Intelligence:723.4
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85107725402
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:13
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/241823 |
专题 | 前沿与交叉科学研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology (SUSTech),Shenzhen 518055,China 2.University Key Laboratory of Advanced Wireless Communications of Guangdong Province,Southern University of Science and Technology,Shenzhen,518055,China 3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 前沿与交叉科学研究院 |
通讯作者单位 | 前沿与交叉科学研究院; 南方科技大学 |
第一作者的第一单位 | 前沿与交叉科学研究院 |
推荐引用方式 GB/T 7714 |
Zeng,Yuan,Gong,Yi,Zhang,Jin. Feature learning and patch matching for diverse image inpainting[J]. PATTERN RECOGNITION,2021,119.
|
APA |
Zeng,Yuan,Gong,Yi,&Zhang,Jin.(2021).Feature learning and patch matching for diverse image inpainting.PATTERN RECOGNITION,119.
|
MLA |
Zeng,Yuan,et al."Feature learning and patch matching for diverse image inpainting".PATTERN RECOGNITION 119(2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
1-s2.0-S003132032100(5110KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论