题名 | Recognition and classification of single melt tracks using deep neural network: A fast and effective method to determine process windows in selective laser melting |
作者 | |
通讯作者 | Rong,Yiming |
发表日期 | 2021-08-01
|
DOI | |
发表期刊 | |
ISSN | 1526-6125
|
卷号 | 68页码:1746-1757 |
摘要 | The identification of process windows in additive manufacturing (AM) out of a vast parameter space is a daunting task, especially for a large variety of feedstock powders used in selective laser melting (SLM). Despite many numerical simulations of the SLM process, the process window for each type of metal powder is typically determined through a sequential and time-consuming trial-and-error approach. Here, we present a fast and effective strategy that single melt tracks in SLM are produced and assessed in a high-throughput fashion using a computer vision approach. Using this strategy, we investigate the possibility of using deep neural network (DNN) models, as an image processing method, to conduct automatic assessments of SLM processing parameters. We identified the optimal laser power and scanning speed in the SLM process for 316L stainless steel and pure copper powders. Our trained models have achieved the highest mean average precision of 0.70 in a time-efficient manner. This method provides a versatile toolbox for accelerating the quality assessments of melt tracks in SLM with minimum human input, benefiting to the automatic AM parametric analysis and optimization. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS记录号 | WOS:000683008200001
|
EI入藏号 | 20212910646106
|
EI主题词 | Image processing
; Melting
; Powder metals
; Processing
; Selective laser melting
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Data Processing and Image Processing:723.2
; Reproduction, Copying:745.2
; Chemical Operations:802.3
; Manufacturing:913.4
|
Scopus记录号 | 2-s2.0-85110023754
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:12
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/241935 |
专题 | 工学院_机械与能源工程系 工学院_材料科学与工程系 |
作者单位 | 1.School of Mechatronics Engineering,Harbin Institute of Technology,Harbin,150001,China 2.Department of Materials Science and Engineering,University of Toronto,M5S 3E4,Canada 3.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,518055,China 4.Department of Mechanical and Industrial Engineering,University of Toronto,M5S 3E4,Canada 5.Department of Statistical Sciences,University of Toronto,M5G 1X6,Canada |
第一作者单位 | 机械与能源工程系 |
通讯作者单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Xing,Wei,Lyu,Tianyi,Chu,Xin,et al. Recognition and classification of single melt tracks using deep neural network: A fast and effective method to determine process windows in selective laser melting[J]. Journal of Manufacturing Processes,2021,68:1746-1757.
|
APA |
Xing,Wei.,Lyu,Tianyi.,Chu,Xin.,Rong,Yiming.,Lee,Chi Guhn.,...&Zou,Yu.(2021).Recognition and classification of single melt tracks using deep neural network: A fast and effective method to determine process windows in selective laser melting.Journal of Manufacturing Processes,68,1746-1757.
|
MLA |
Xing,Wei,et al."Recognition and classification of single melt tracks using deep neural network: A fast and effective method to determine process windows in selective laser melting".Journal of Manufacturing Processes 68(2021):1746-1757.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论