中文版 | English
题名

Recognition and classification of single melt tracks using deep neural network: A fast and effective method to determine process windows in selective laser melting

作者
通讯作者Rong,Yiming
发表日期
2021-08-01
DOI
发表期刊
ISSN
1526-6125
卷号68页码:1746-1757
摘要

The identification of process windows in additive manufacturing (AM) out of a vast parameter space is a daunting task, especially for a large variety of feedstock powders used in selective laser melting (SLM). Despite many numerical simulations of the SLM process, the process window for each type of metal powder is typically determined through a sequential and time-consuming trial-and-error approach. Here, we present a fast and effective strategy that single melt tracks in SLM are produced and assessed in a high-throughput fashion using a computer vision approach. Using this strategy, we investigate the possibility of using deep neural network (DNN) models, as an image processing method, to conduct automatic assessments of SLM processing parameters. We identified the optimal laser power and scanning speed in the SLM process for 316L stainless steel and pure copper powders. Our trained models have achieved the highest mean average precision of 0.70 in a time-efficient manner. This method provides a versatile toolbox for accelerating the quality assessments of melt tracks in SLM with minimum human input, benefiting to the automatic AM parametric analysis and optimization.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS记录号
WOS:000683008200001
EI入藏号
20212910646106
EI主题词
Image processing ; Melting ; Powder metals ; Processing ; Selective laser melting
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Reproduction, Copying:745.2 ; Chemical Operations:802.3 ; Manufacturing:913.4
Scopus记录号
2-s2.0-85110023754
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/241935
专题工学院_机械与能源工程系
工学院_材料科学与工程系
作者单位
1.School of Mechatronics Engineering,Harbin Institute of Technology,Harbin,150001,China
2.Department of Materials Science and Engineering,University of Toronto,M5S 3E4,Canada
3.Department of Mechanical and Energy Engineering,Southern University of Science and Technology,518055,China
4.Department of Mechanical and Industrial Engineering,University of Toronto,M5S 3E4,Canada
5.Department of Statistical Sciences,University of Toronto,M5G 1X6,Canada
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系
推荐引用方式
GB/T 7714
Xing,Wei,Lyu,Tianyi,Chu,Xin,et al. Recognition and classification of single melt tracks using deep neural network: A fast and effective method to determine process windows in selective laser melting[J]. Journal of Manufacturing Processes,2021,68:1746-1757.
APA
Xing,Wei.,Lyu,Tianyi.,Chu,Xin.,Rong,Yiming.,Lee,Chi Guhn.,...&Zou,Yu.(2021).Recognition and classification of single melt tracks using deep neural network: A fast and effective method to determine process windows in selective laser melting.Journal of Manufacturing Processes,68,1746-1757.
MLA
Xing,Wei,et al."Recognition and classification of single melt tracks using deep neural network: A fast and effective method to determine process windows in selective laser melting".Journal of Manufacturing Processes 68(2021):1746-1757.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xing,Wei]的文章
[Lyu,Tianyi]的文章
[Chu,Xin]的文章
百度学术
百度学术中相似的文章
[Xing,Wei]的文章
[Lyu,Tianyi]的文章
[Chu,Xin]的文章
必应学术
必应学术中相似的文章
[Xing,Wei]的文章
[Lyu,Tianyi]的文章
[Chu,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。