题名 | Environmental selection using a fuzzy classifier for multiobjective evolutionary algorithms |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2021-06-26
|
会议名称 | 2nd Genetic and Evolutionary Computation Conference (GECCO)
|
会议录名称 | |
页码 | 485-492
|
会议日期 | JUL 10-14, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | The quality of solutions in multiobjective evolutionary algorithms (MOEAs) is usually evaluated by objective functions. However, function evaluations (FEs) are usually time-consuming in real-world problems. A large number of FEs limit the application of MOEAs. In this paper, we propose a fuzzy classifier-based selection strategy to reduce the number of FEs of MOEAs. First, all evaluated solutions in previous generations are used to build a fuzzy classifier. Second, the built fuzzy classifier is used to predict each unevaluated solution's label and its membership degree. The reproduction procedure is repeated to generate enough offspring solutions (classified as positive by the classifier). Next, unevaluated solutions are sorted based on their membership degrees in descending order. The same number of solutions as the population size are selected from the top of the sorted unevaluated solutions. Then, the best half of the chosen solutions are selected and stored in the new population without evaluations. The other half solutions are evaluated. Finally, the evaluated solutions are used together with evaluated current solutions for environmental selection to form another half of the new population. The proposed strategy is integrated into two MOEAs. Our experimental results demonstrate the effectiveness of the proposed strategy on reducing FEs. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075]
|
WOS研究方向 | Computer Science
; Operations Research & Management Science
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Operations Research & Management Science
; Mathematics, Applied
|
WOS记录号 | WOS:000773791800058
|
EI入藏号 | 20212910647383
|
EI主题词 | Cell proliferation
; Function evaluation
; Fuzzy sets
; Population statistics
; Quality control
|
EI分类号 | Biology:461.9
; Quality Assurance and Control:913.3
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85110172341
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242134 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Jinyuan,Ishibuchi,Hisao,Shang,Ke,et al. Environmental selection using a fuzzy classifier for multiobjective evolutionary algorithms[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:485-492.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论