中文版 | English
题名

Environmental selection using a fuzzy classifier for multiobjective evolutionary algorithms

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2021-06-26
会议名称
2nd Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
485-492
会议日期
JUL 10-14, 2021
会议地点
null,null,ELECTR NETWORK
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
The quality of solutions in multiobjective evolutionary algorithms (MOEAs) is usually evaluated by objective functions. However, function evaluations (FEs) are usually time-consuming in real-world problems. A large number of FEs limit the application of MOEAs. In this paper, we propose a fuzzy classifier-based selection strategy to reduce the number of FEs of MOEAs. First, all evaluated solutions in previous generations are used to build a fuzzy classifier. Second, the built fuzzy classifier is used to predict each unevaluated solution's label and its membership degree. The reproduction procedure is repeated to generate enough offspring solutions (classified as positive by the classifier). Next, unevaluated solutions are sorted based on their membership degrees in descending order. The same number of solutions as the population size are selected from the top of the sorted unevaluated solutions. Then, the best half of the chosen solutions are selected and stored in the new population without evaluations. The other half solutions are evaluated. Finally, the evaluated solutions are used together with evaluated current solutions for environmental selection to form another half of the new population. The proposed strategy is integrated into two MOEAs. Our experimental results demonstrate the effectiveness of the proposed strategy on reducing FEs.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075]
WOS研究方向
Computer Science ; Operations Research & Management Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000773791800058
EI入藏号
20212910647383
EI主题词
Cell proliferation ; Function evaluation ; Fuzzy sets ; Population statistics ; Quality control
EI分类号
Biology:461.9 ; Quality Assurance and Control:913.3 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85110172341
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242134
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang,Jinyuan,Ishibuchi,Hisao,Shang,Ke,et al. Environmental selection using a fuzzy classifier for multiobjective evolutionary algorithms[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:485-492.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Jinyuan]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
百度学术
百度学术中相似的文章
[Zhang,Jinyuan]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
必应学术
必应学术中相似的文章
[Zhang,Jinyuan]的文章
[Ishibuchi,Hisao]的文章
[Shang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。