中文版 | English
题名

Greedy approximated hypervolume subset selection for many-objective optimization

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2021-06-26
会议名称
2nd Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
448-456
会议日期
JUL 10-14, 2021
会议地点
null,null,ELECTR NETWORK
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Hypervolume subset selection (HSS) aims to select a subset from a candidate solution set so that the hypervolume of the selected subset is maximized. Due to its NP-hardness nature, the greedy algorithms are the most efficient for solving HSS in many-objective optimization. However, when the number of objectives is large, the calculation of the hypervolume contribution in the greedy HSS is time-consuming, which makes the greedy HSS inefficient. To solve this issue, in this paper we propose a greedy approximated HSS algorithm. The main idea is to use an R2-based hypervolume contribution approximation method in the greedy HSS. In the algorithm implementation, a utility tensor structure is introduced to facilitate the calculation of the hypervolume contribution approximation. In addition, the tensor information in the last step is utilized in the current step to accelerate the calculation. We also apply the lazy strategy in the proposed algorithm to further improve its efficiency. We test the greedy approximated HSS algorithm on 3-10 objective candidate solution sets. The experimental results show that the proposed algorithm is much faster than the state-of-the-art greedy HSS algorithm in many-objective optimization while their hypervolume performance is almost the same.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[62002152,61876075]
WOS研究方向
Computer Science ; Operations Research & Management Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000773791800054
EI入藏号
20212910647377
EI主题词
Evolutionary algorithms ; NP-hard ; Set theory ; Tensors
EI分类号
Mathematics:921
Scopus记录号
2-s2.0-85110107328
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242135
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Shang,Ke,Ishibuchi,Hisao,Chen,Weiyu. Greedy approximated hypervolume subset selection for many-objective optimization[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:448-456.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
[Chen,Weiyu]的文章
百度学术
百度学术中相似的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
[Chen,Weiyu]的文章
必应学术
必应学术中相似的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
[Chen,Weiyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。