题名 | Greedy approximated hypervolume subset selection for many-objective optimization |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2021-06-26
|
会议名称 | 2nd Genetic and Evolutionary Computation Conference (GECCO)
|
会议录名称 | |
页码 | 448-456
|
会议日期 | JUL 10-14, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | Hypervolume subset selection (HSS) aims to select a subset from a candidate solution set so that the hypervolume of the selected subset is maximized. Due to its NP-hardness nature, the greedy algorithms are the most efficient for solving HSS in many-objective optimization. However, when the number of objectives is large, the calculation of the hypervolume contribution in the greedy HSS is time-consuming, which makes the greedy HSS inefficient. To solve this issue, in this paper we propose a greedy approximated HSS algorithm. The main idea is to use an R2-based hypervolume contribution approximation method in the greedy HSS. In the algorithm implementation, a utility tensor structure is introduced to facilitate the calculation of the hypervolume contribution approximation. In addition, the tensor information in the last step is utilized in the current step to accelerate the calculation. We also apply the lazy strategy in the proposed algorithm to further improve its efficiency. We test the greedy approximated HSS algorithm on 3-10 objective candidate solution sets. The experimental results show that the proposed algorithm is much faster than the state-of-the-art greedy HSS algorithm in many-objective optimization while their hypervolume performance is almost the same. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62002152,61876075]
|
WOS研究方向 | Computer Science
; Operations Research & Management Science
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Operations Research & Management Science
; Mathematics, Applied
|
WOS记录号 | WOS:000773791800054
|
EI入藏号 | 20212910647377
|
EI主题词 | Evolutionary algorithms
; NP-hard
; Set theory
; Tensors
|
EI分类号 | Mathematics:921
|
Scopus记录号 | 2-s2.0-85110107328
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242135 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Shang,Ke,Ishibuchi,Hisao,Chen,Weiyu. Greedy approximated hypervolume subset selection for many-objective optimization[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:448-456.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论