中文版 | English
题名

When non-elitism meets time-linkage problems

作者
通讯作者Yao,Xin
DOI
发表日期
2021-06-26
会议名称
2nd Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
741-749
会议日期
JUL 10-14, 2021
会议地点
null,null,ELECTR NETWORK
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Many real-world applications have the time-linkage property, and the only theoretical analysis is recently given by Zheng, et al. (TEVC 2021) on their proposed time-linkage OneMax problem, OneMax(0,1n). However, only two elitist algorithms (1 + 1) EA and (μ + 1) EA are analyzed, and it is unknown whether the non-elitism mechanism could help to escape the local optima existed in OneMax(0,1n). In general, there are few theoretical results on the benefits of the non-elitism in evolutionary algorithms. In this work, we analyze on the influence of the non-elitism via comparing the performance of the elitist (1 + λ) EA and its non-elitist counterpart (1, λ) EA. We prove that with probability 1 - o(1) (1 + λ) EA will get stuck in the local optima and cannot find the global optimum, but with probability 1, (1, λ) EA can reach the global optimum and its expected runtime is O(n3+c log n) with [EQUATION] for the constant c ≥ 1. Noting that a smaller offspring size is helpful for escaping from the local optima, we further resort to the compact genetic algorithm where only two individuals are sampled to update the probabilistic model, and prove its expected runtime of O(n3 log n). Our computational experiments also verify the efficiency of the two non-elitist algorithms.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Guangdong Basic and Applied Basic Research Foundation[2019A1515110177] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science ; Operations Research & Management Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000773791800087
EI入藏号
20212910647518
EI主题词
Genetic algorithms
Scopus记录号
2-s2.0-85110105255
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242136
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.School of Computer Science and Technology,University of Science and Technology of China,Hefei,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zheng,Weijie,Zhang,Qiaozhi,Chen,Huanhuan,et al. When non-elitism meets time-linkage problems[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:741-749.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng,Weijie]的文章
[Zhang,Qiaozhi]的文章
[Chen,Huanhuan]的文章
百度学术
百度学术中相似的文章
[Zheng,Weijie]的文章
[Zhang,Qiaozhi]的文章
[Chen,Huanhuan]的文章
必应学术
必应学术中相似的文章
[Zheng,Weijie]的文章
[Zhang,Qiaozhi]的文章
[Chen,Huanhuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。