题名 | When non-elitism meets time-linkage problems |
作者 | |
通讯作者 | Yao,Xin |
DOI | |
发表日期 | 2021-06-26
|
会议名称 | 2nd Genetic and Evolutionary Computation Conference (GECCO)
|
会议录名称 | |
页码 | 741-749
|
会议日期 | JUL 10-14, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | Many real-world applications have the time-linkage property, and the only theoretical analysis is recently given by Zheng, et al. (TEVC 2021) on their proposed time-linkage OneMax problem, OneMax(0,1n). However, only two elitist algorithms (1 + 1) EA and (μ + 1) EA are analyzed, and it is unknown whether the non-elitism mechanism could help to escape the local optima existed in OneMax(0,1n). In general, there are few theoretical results on the benefits of the non-elitism in evolutionary algorithms. In this work, we analyze on the influence of the non-elitism via comparing the performance of the elitist (1 + λ) EA and its non-elitist counterpart (1, λ) EA. We prove that with probability 1 - o(1) (1 + λ) EA will get stuck in the local optima and cannot find the global optimum, but with probability 1, (1, λ) EA can reach the global optimum and its expected runtime is O(n3+c log n) with [EQUATION] for the constant c ≥ 1. Noting that a smaller offspring size is helpful for escaping from the local optima, we further resort to the compact genetic algorithm where only two individuals are sampled to update the probabilistic model, and prove its expected runtime of O(n3 log n). Our computational experiments also verify the efficiency of the two non-elitist algorithms. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Guangdong Basic and Applied Basic Research Foundation[2019A1515110177]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
|
WOS研究方向 | Computer Science
; Operations Research & Management Science
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Operations Research & Management Science
; Mathematics, Applied
|
WOS记录号 | WOS:000773791800087
|
EI入藏号 | 20212910647518
|
EI主题词 | Genetic algorithms
|
Scopus记录号 | 2-s2.0-85110105255
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242136 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.School of Computer Science and Technology,University of Science and Technology of China,Hefei,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zheng,Weijie,Zhang,Qiaozhi,Chen,Huanhuan,et al. When non-elitism meets time-linkage problems[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:741-749.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论