中文版 | English
题名

Distance-based subset selection revisited

作者
通讯作者Ishibuchi,Hisao
DOI
发表日期
2021-06-26
会议名称
2nd Genetic and Evolutionary Computation Conference (GECCO)
会议录名称
页码
439-447
会议日期
JUL 10-14, 2021
会议地点
null,null,ELECTR NETWORK
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
In this paper, we revisit the distance-based subset selection (DSS) algorithm in evolutionary multi-objective optimization. First, we show one drawback of the DSS algorithm, i.e., a uniformly distributed solution set cannot always be selected. Then, we show that this drawback can be overcome by maximizing the uniformity level of the selected solution set, which is defined by the minimum distance between two solutions in the solution set. Furthermore, we prove that the DSS algorithm is a greedy inclusion algorithm with respect to the maximization of the uniformity level. Based on this conclusion, we generalize DSS as a subset selection problem where the objective is to maximize the uniformity level of the subset. In addition to the greedy inclusion DSS algorithm, a greedy removal algorithm and an iterative algorithm are proposed for the generalized DSS problem. We also extend the Euclidean distance in the original DSS to other widely-used and user-defined distances. We conduct extensive experiments on solution sets over different types of Pareto fronts to compare the three DSS algorithms with different distances. Our results suggest the usefulness of the generalized DSS for selecting a uniform subset. The effect of using different distances on the selected subsets is also analyzed.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[62002152,61876075]
WOS研究方向
Computer Science ; Operations Research & Management Science ; Mathematics
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Operations Research & Management Science ; Mathematics, Applied
WOS记录号
WOS:000773791800053
EI入藏号
20212910647378
EI主题词
Iterative methods ; Multiobjective optimization ; Set theory
EI分类号
Mathematics:921
Scopus记录号
2-s2.0-85110056050
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242137
专题工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Shang,Ke,Ishibuchi,Hisao,Nan,Yang. Distance-based subset selection revisited[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:439-447.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
[Nan,Yang]的文章
百度学术
百度学术中相似的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
[Nan,Yang]的文章
必应学术
必应学术中相似的文章
[Shang,Ke]的文章
[Ishibuchi,Hisao]的文章
[Nan,Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。