题名 | Distance-based subset selection revisited |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2021-06-26
|
会议名称 | 2nd Genetic and Evolutionary Computation Conference (GECCO)
|
会议录名称 | |
页码 | 439-447
|
会议日期 | JUL 10-14, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | In this paper, we revisit the distance-based subset selection (DSS) algorithm in evolutionary multi-objective optimization. First, we show one drawback of the DSS algorithm, i.e., a uniformly distributed solution set cannot always be selected. Then, we show that this drawback can be overcome by maximizing the uniformity level of the selected solution set, which is defined by the minimum distance between two solutions in the solution set. Furthermore, we prove that the DSS algorithm is a greedy inclusion algorithm with respect to the maximization of the uniformity level. Based on this conclusion, we generalize DSS as a subset selection problem where the objective is to maximize the uniformity level of the subset. In addition to the greedy inclusion DSS algorithm, a greedy removal algorithm and an iterative algorithm are proposed for the generalized DSS problem. We also extend the Euclidean distance in the original DSS to other widely-used and user-defined distances. We conduct extensive experiments on solution sets over different types of Pareto fronts to compare the three DSS algorithms with different distances. Our results suggest the usefulness of the generalized DSS for selecting a uniform subset. The effect of using different distances on the selected subsets is also analyzed. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62002152,61876075]
|
WOS研究方向 | Computer Science
; Operations Research & Management Science
; Mathematics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Operations Research & Management Science
; Mathematics, Applied
|
WOS记录号 | WOS:000773791800053
|
EI入藏号 | 20212910647378
|
EI主题词 | Iterative methods
; Multiobjective optimization
; Set theory
|
EI分类号 | Mathematics:921
|
Scopus记录号 | 2-s2.0-85110056050
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242137 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Shang,Ke,Ishibuchi,Hisao,Nan,Yang. Distance-based subset selection revisited[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2021:439-447.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论