题名 | Memory-assisted dual-end adaptation network for choroid segmentation in multi-domain optical coherence tomography |
作者 | |
通讯作者 | Yang,Jianlong |
DOI | |
发表日期 | 2021-04-13
|
会议名称 | 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
|
ISSN | 1945-7928
|
EISSN | 1945-8452
|
ISBN | 978-1-6654-2947-4
|
会议录名称 | |
卷号 | 2021-April
|
页码 | 1614-1617
|
会议日期 | 13-16 April 2021
|
会议地点 | Nice, France
|
摘要 | Accurate measurement of choroid layer in optical coherence tomography (OCT) is crucial in the diagnosis of many ocular diseases, such as pathological myopia and glaucoma. Deep learning has shown its superiority in automatic choroid segmentation. However, because of the domain discrepancies among datasets obtained by the OCT devices of different manufacturers, the generalization capability of trained models is limited. We propose a memory-assisted dual-end adaptation network to address the universality problem. Different from the existing works that can only perform one-to-one domain adaptation, our method is capable of performing one-to-many adaptation. In the proposed method, we introduce a memory module to memorize the encoded style features of every involved domain. Both input and output space adaptation are employed to regularize the choroid segmentation. We evaluate the proposed method over different datasets acquired by four major OCT manufacturers (TOPCON, NIDEK, ZEISS, HEIDELBERG). Experiments show that our proposed method outperforms existing methods with significant margins of improvement in terms of all metrics. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20212310465333
|
EI主题词 | Deep learning
; Diagnosis
; Manufacture
; Medical imaging
; Ophthalmology
; Tomography
|
EI分类号 | Medicine and Pharmacology:461.6
; Heat Treatment Processes:537.1
; Optical Devices and Systems:741.3
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85107221882
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9433866 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242190 |
专题 | 南方科技大学 工学院_电子与电气工程系 |
作者单位 | 1.Cixi Institute of Biomedical Engineering,Ningbo Institute of Industrial Technology,Chinese Academy of Sciences,Ningbo,China 2.ShanghaiTech University,School of Information Science and Technology,China 3.Fudan University Eye and ENT Hospital,Department of Ophthalmology,Shanghai,China 4.Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Chai,Zhenjie,Yang,Jianlong,Zhou,Kang,et al. Memory-assisted dual-end adaptation network for choroid segmentation in multi-domain optical coherence tomography[C],2021:1614-1617.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Memory-Assisted_Dual(1560KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论