中文版 | English
题名

Memory-assisted dual-end adaptation network for choroid segmentation in multi-domain optical coherence tomography

作者
通讯作者Yang,Jianlong
DOI
发表日期
2021-04-13
会议名称
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-6654-2947-4
会议录名称
卷号
2021-April
页码
1614-1617
会议日期
13-16 April 2021
会议地点
Nice, France
摘要

Accurate measurement of choroid layer in optical coherence tomography (OCT) is crucial in the diagnosis of many ocular diseases, such as pathological myopia and glaucoma. Deep learning has shown its superiority in automatic choroid segmentation. However, because of the domain discrepancies among datasets obtained by the OCT devices of different manufacturers, the generalization capability of trained models is limited. We propose a memory-assisted dual-end adaptation network to address the universality problem. Different from the existing works that can only perform one-to-one domain adaptation, our method is capable of performing one-to-many adaptation. In the proposed method, we introduce a memory module to memorize the encoded style features of every involved domain. Both input and output space adaptation are employed to regularize the choroid segmentation. We evaluate the proposed method over different datasets acquired by four major OCT manufacturers (TOPCON, NIDEK, ZEISS, HEIDELBERG). Experiments show that our proposed method outperforms existing methods with significant margins of improvement in terms of all metrics.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20212310465333
EI主题词
Deep learning ; Diagnosis ; Manufacture ; Medical imaging ; Ophthalmology ; Tomography
EI分类号
Medicine and Pharmacology:461.6 ; Heat Treatment Processes:537.1 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85107221882
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9433866
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242190
专题南方科技大学
工学院_电子与电气工程系
作者单位
1.Cixi Institute of Biomedical Engineering,Ningbo Institute of Industrial Technology,Chinese Academy of Sciences,Ningbo,China
2.ShanghaiTech University,School of Information Science and Technology,China
3.Fudan University Eye and ENT Hospital,Department of Ophthalmology,Shanghai,China
4.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Chai,Zhenjie,Yang,Jianlong,Zhou,Kang,et al. Memory-assisted dual-end adaptation network for choroid segmentation in multi-domain optical coherence tomography[C],2021:1614-1617.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Memory-Assisted_Dual(1560KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chai,Zhenjie]的文章
[Yang,Jianlong]的文章
[Zhou,Kang]的文章
百度学术
百度学术中相似的文章
[Chai,Zhenjie]的文章
[Yang,Jianlong]的文章
[Zhou,Kang]的文章
必应学术
必应学术中相似的文章
[Chai,Zhenjie]的文章
[Yang,Jianlong]的文章
[Zhou,Kang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。