中文版 | English
题名

Restoration of cataract fundus images via unsupervised domain adaptation

作者
通讯作者Hu,Yan; Liu,Jiang
DOI
发表日期
2021-04-13
会议名称
ISBI2021
ISSN
1945-7928
EISSN
1945-8452
ISBN
978-1-6654-2947-4
会议录名称
卷号
2021-April
页码
516-520
会议日期
April 13-16,2021
会议地点
Nice
摘要

Cataract presents the leading cause of preventable blindness in the world. The degraded image quality of cataract fundus increases the risk of misdiagnosis and the uncertainty in preoperative planning. Unfortunately, the absence of annotated data, which should consist of cataract images and the corresponding clear ones from the same patients after surgery, limits the development of restoration algorithms for cataract images. In this paper, we propose an end-to-end unsupervised restoration method of cataract images to enhance the clinical observation of cataract fundus. The proposed method begins with constructing an annotated source domain through simulating cataract-like images. Then a restoration model for cataract images is designed based on pix2pix framework and trained via unsupervised domain adaptation to generalize the restoration mapping from simulated data to real one. In the experiment, the proposed method is validated in an ablation study and a comparison with previous methods. A favorable performance is presented by the proposed method against the previous methods. The code of of this paper will be released at https://github.com/liamheng/Restoration-of-Cataract-Images-via-Domain-Adaptation.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20212310465562
EI主题词
Image enhancement ; Medical imaging ; Restoration
EI分类号
Computers And Data Processing
Scopus记录号
2-s2.0-85107180565
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9433795
引用统计
被引频次[WOS]:10
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242193
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,School of Computer Science and Engineering,Shenzhen,518055,China
2.Tomey Corporation,Nagoya,451-0051,Japan
3.Cixi Institute of Biomedical Engineering Ningbo Institute of Industrial Technology,Chinese Academy of Sciences,Ningbo,315201,China
4.Peking University Third Hospital,Department of Ophthalmology,Beijing,100191,China
5.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Li,Heng,Liu,Haofeng,Hu,Yan,et al. Restoration of cataract fundus images via unsupervised domain adaptation[C],2021:516-520.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Restoration of Catar(3705KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Heng]的文章
[Liu,Haofeng]的文章
[Hu,Yan]的文章
百度学术
百度学术中相似的文章
[Li,Heng]的文章
[Liu,Haofeng]的文章
[Hu,Yan]的文章
必应学术
必应学术中相似的文章
[Li,Heng]的文章
[Liu,Haofeng]的文章
[Hu,Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。