题名 | Restoration of cataract fundus images via unsupervised domain adaptation |
作者 | |
通讯作者 | Hu,Yan; Liu,Jiang |
DOI | |
发表日期 | 2021-04-13
|
会议名称 | ISBI2021
|
ISSN | 1945-7928
|
EISSN | 1945-8452
|
ISBN | 978-1-6654-2947-4
|
会议录名称 | |
卷号 | 2021-April
|
页码 | 516-520
|
会议日期 | April 13-16,2021
|
会议地点 | Nice
|
摘要 | Cataract presents the leading cause of preventable blindness in the world. The degraded image quality of cataract fundus increases the risk of misdiagnosis and the uncertainty in preoperative planning. Unfortunately, the absence of annotated data, which should consist of cataract images and the corresponding clear ones from the same patients after surgery, limits the development of restoration algorithms for cataract images. In this paper, we propose an end-to-end unsupervised restoration method of cataract images to enhance the clinical observation of cataract fundus. The proposed method begins with constructing an annotated source domain through simulating cataract-like images. Then a restoration model for cataract images is designed based on pix2pix framework and trained via unsupervised domain adaptation to generalize the restoration mapping from simulated data to real one. In the experiment, the proposed method is validated in an ablation study and a comparison with previous methods. A favorable performance is presented by the proposed method against the previous methods. The code of of this paper will be released at https://github.com/liamheng/Restoration-of-Cataract-Images-via-Domain-Adaptation. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20212310465562
|
EI主题词 | Image enhancement
; Medical imaging
; Restoration
|
EI分类号 | Computers And Data Processing
|
Scopus记录号 | 2-s2.0-85107180565
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9433795 |
引用统计 |
被引频次[WOS]:10
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242193 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,School of Computer Science and Engineering,Shenzhen,518055,China 2.Tomey Corporation,Nagoya,451-0051,Japan 3.Cixi Institute of Biomedical Engineering Ningbo Institute of Industrial Technology,Chinese Academy of Sciences,Ningbo,315201,China 4.Peking University Third Hospital,Department of Ophthalmology,Beijing,100191,China 5.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Li,Heng,Liu,Haofeng,Hu,Yan,et al. Restoration of cataract fundus images via unsupervised domain adaptation[C],2021:516-520.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Restoration of Catar(3705KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论