题名 | Data-driven hospital personnel scheduling optimization through patients prediction |
作者 | |
通讯作者 | Song,Xuan |
发表日期 | 2021-03-01
|
DOI | |
发表期刊 | |
ISSN | 2524-521X
|
EISSN | 2524-5228
|
卷号 | 3期号:1页码:40-56 |
摘要 | With the rapid development of the modern city, technologies of smart cities are indispensable for solving urban problems. Medical services are one of the key areas related to the lives of urban residents. In particular, how to effectively manage the human resources of a hospital is a complex and challenging problem to improve treatment capabilities. Due to the grievous shortage of medical personnel, hospitals have to make quality schedules to improve the efficiency of the hospital and the utilization rate of human resources. Although there have been a large number of researches on hospital staff scheduling, few people also consider future patient population forecasts, doctor scheduling and hospital structure. These factors are very important in the hospital staff scheduling problem. Concerning this, this paper establishes an optimization system combining a two-layer mixed-integer linear programming and an extended prophet model for the hospital personnel scheduling. The model considers factors such as weather, disease types, number of patients, room resources, doctor resources, working hours, etc., and can quickly obtain a timetable with complex constraints. Finally, the convergence and the practicability of the model has been verified with real data from a hospital in China. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Cybernetics
; Computer Science, Information Systems
; Computer Science, Interdisciplinary Applications
|
WOS记录号 | WOS:000710546200003
|
出版者 | |
EI入藏号 | 20220811691795
|
EI主题词 | Forecasting
; Hospitals
; Integer programming
; Personnel
|
EI分类号 | Hospitals, Equipment and Supplies:462.2
; Management:912.2
; Personnel:912.4
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85107916074
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242202 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.SUSTech-UTokyo Joint Research Center on Super Smart City,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.Western Norway Research Institute,Sogndal,Norway |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Feng,Defan,Mo,Yu,Tang,Zhiyao,et al. Data-driven hospital personnel scheduling optimization through patients prediction[J]. CCF Transactions on Pervasive Computing and Interaction,2021,3(1):40-56.
|
APA |
Feng,Defan.,Mo,Yu.,Tang,Zhiyao.,Chen,Quanjun.,Zhang,Haoran.,...&Song,Xuan.(2021).Data-driven hospital personnel scheduling optimization through patients prediction.CCF Transactions on Pervasive Computing and Interaction,3(1),40-56.
|
MLA |
Feng,Defan,et al."Data-driven hospital personnel scheduling optimization through patients prediction".CCF Transactions on Pervasive Computing and Interaction 3.1(2021):40-56.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论