中文版 | English
题名

Data-driven hospital personnel scheduling optimization through patients prediction

作者
通讯作者Song,Xuan
发表日期
2021-03-01
DOI
发表期刊
ISSN
2524-521X
EISSN
2524-5228
卷号3期号:1页码:40-56
摘要
With the rapid development of the modern city, technologies of smart cities are indispensable for solving urban problems. Medical services are one of the key areas related to the lives of urban residents. In particular, how to effectively manage the human resources of a hospital is a complex and challenging problem to improve treatment capabilities. Due to the grievous shortage of medical personnel, hospitals have to make quality schedules to improve the efficiency of the hospital and the utilization rate of human resources. Although there have been a large number of researches on hospital staff scheduling, few people also consider future patient population forecasts, doctor scheduling and hospital structure. These factors are very important in the hospital staff scheduling problem. Concerning this, this paper establishes an optimization system combining a two-layer mixed-integer linear programming and an extended prophet model for the hospital personnel scheduling. The model considers factors such as weather, disease types, number of patients, room resources, doctor resources, working hours, etc., and can quickly obtain a timetable with complex constraints. Finally, the convergence and the practicability of the model has been verified with real data from a hospital in China.
关键词
相关链接[Scopus记录]
收录类别
ESCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Cybernetics ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000710546200003
出版者
EI入藏号
20220811691795
EI主题词
Forecasting ; Hospitals ; Integer programming ; Personnel
EI分类号
Hospitals, Equipment and Supplies:462.2 ; Management:912.2 ; Personnel:912.4 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85107916074
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242202
专题工学院_计算机科学与工程系
作者单位
1.SUSTech-UTokyo Joint Research Center on Super Smart City,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Western Norway Research Institute,Sogndal,Norway
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Feng,Defan,Mo,Yu,Tang,Zhiyao,et al. Data-driven hospital personnel scheduling optimization through patients prediction[J]. CCF Transactions on Pervasive Computing and Interaction,2021,3(1):40-56.
APA
Feng,Defan.,Mo,Yu.,Tang,Zhiyao.,Chen,Quanjun.,Zhang,Haoran.,...&Song,Xuan.(2021).Data-driven hospital personnel scheduling optimization through patients prediction.CCF Transactions on Pervasive Computing and Interaction,3(1),40-56.
MLA
Feng,Defan,et al."Data-driven hospital personnel scheduling optimization through patients prediction".CCF Transactions on Pervasive Computing and Interaction 3.1(2021):40-56.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Feng,Defan]的文章
[Mo,Yu]的文章
[Tang,Zhiyao]的文章
百度学术
百度学术中相似的文章
[Feng,Defan]的文章
[Mo,Yu]的文章
[Tang,Zhiyao]的文章
必应学术
必应学术中相似的文章
[Feng,Defan]的文章
[Mo,Yu]的文章
[Tang,Zhiyao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。