中文版 | English
题名

Multi-objective memetic algorithm for core-periphery structure detection in complex network

作者
通讯作者Zhu,Zexuan
发表日期
2021
DOI
发表期刊
ISSN
1865-9284
EISSN
1865-9292
卷号13页码:285-306
摘要
Core-periphery structure detection (CPSD) in complex networks is essential to reveal functional nodes in the complicated systems, e.g., influential nodes in a social network and central cells in a biological network. Some progress has been made in solving the CPSD problem with heuristic algorithms. However, CPSD is naturally an NP-hard optimization problem and the core-periphery structures (CPSs) in real networks usually are not clearly distinguishable. The majority of the existing CPSD methods are single-objective methods relying on some assumptions, preference, and/or prior knowledge. They can provide only one trade-off solution that is inevitably biased and lacks of flexibility in terms of resolution. To address this issue, this paper formulates the CPSD problem as a multi-objective optimization problem (MOP), i.e., minimizing the core-node size and maximizing the core-node capacity of the CPSs, simultaneously. Solving the MOP can provide more accurate CPSs and allow one to explore the network structure at different preferred resolutions. A multi-objective memetic algorithm (called MOMA-PCLS) is accordingly proposed to solve the formulated problem. A new plateau-climbing local search (PCLS) method incorporating the information of the heavy-tailed distribution of the node capacity is introduced to fine-tune the individual solutions in MOMA-PCLS. By combining the evolutionary operations and PCLS, MOMA-PCLS manages to improve the search efficiency significantly. Experimental results on both synthetic and real-world data show the superiority of MOMA-PCLS to other state-of-the-art algorithms in detecting CPSs of complex networks.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[61871272,61803269] ; Guangdong Provincial Key Laboratory["2020B121201001","2020A1515010790"] ; Shenzhen Fundamental Research Program["JCYJ20190808173617147","JCYJ20190808174801673"] ; BGI-Research Shenzhen Open Funds[BGIRSZ 20200002]
WOS研究方向
Computer Science ; Operations Research & Management Science
WOS类目
Computer Science, Artificial Intelligence ; Operations Research & Management Science
WOS记录号
WOS:000678494300002
出版者
EI入藏号
20213110708778
EI主题词
Economic and social effects ; Heuristic algorithms ; Multiobjective optimization ; NP-hard
EI分类号
Computer Systems and Equipment:722 ; Computer Programming:723.1 ; Optimization Techniques:921.5 ; Social Sciences:971
Scopus记录号
2-s2.0-85111534603
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242217
专题南方科技大学
作者单位
1.College of Computer Science and Software Engineering,Shenzhen University,Shenzhen,518060,China
2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,518055,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Li,Guo,Zhu,Zexuan,Ma,Lijia,et al. Multi-objective memetic algorithm for core-periphery structure detection in complex network[J]. Memetic Computing,2021,13:285-306.
APA
Li,Guo,Zhu,Zexuan,Ma,Lijia,&Ma,Xiaoliang.(2021).Multi-objective memetic algorithm for core-periphery structure detection in complex network.Memetic Computing,13,285-306.
MLA
Li,Guo,et al."Multi-objective memetic algorithm for core-periphery structure detection in complex network".Memetic Computing 13(2021):285-306.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Guo]的文章
[Zhu,Zexuan]的文章
[Ma,Lijia]的文章
百度学术
百度学术中相似的文章
[Li,Guo]的文章
[Zhu,Zexuan]的文章
[Ma,Lijia]的文章
必应学术
必应学术中相似的文章
[Li,Guo]的文章
[Zhu,Zexuan]的文章
[Ma,Lijia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。